With the help of accurate prediction, high risk patient may be informed before hand regarding the probability of conversion and hence they may have a chance to make arrangements accordingly. On the other hand, surgeons also may have to schedule the time and team for the operation appropriately. Surgeons can also be aware about the possible complications that may arise in high risk patients.
Multiple sclerosis (MS) is the leading cause of neurological disability in young adults, affecting some two million people worldwide. Traditionally, MS has been considered a chronic, inflammatory disorder of the central white matter in which ensuing demyelination results in physical disability [Frohman EM, Racke MK, Raine CS (2006) N Engl J Med 354:942–955]. More recently, MS has become increasingly viewed as a neurodegenerative disorder in which neuronal loss, axonal injury, and atrophy of the CNS lead to permanent neurological and clinical disability. Although axonal pathology and loss in MS has been recognized for >100 years, very little is known about the underlying molecular mechanisms. Progressive axonal loss in MS may stem from a cascade of ionic imbalances initiated by inflammation, leading to mitochondrial dysfunction and energetic deficits that result in mitochondrial and cellular Ca2+ overload. In a murine disease model, experimental autoimmune encephalomyelitis (EAE) mice lacking cyclophilin D (CyPD), a key regulator of the mitochondrial permeability transition pore (PTP), developed EAE, but unlike WT mice, they partially recovered. Examination of the spinal cords of CyPD-knockout mice revealed a striking preservation of axons, despite a similar extent of inflammation. Furthermore, neurons prepared from CyPD-knockout animals were resistant to reactive oxygen and nitrogen species thought to mediate axonal damage in EAE and MS, and brain mitochondria lacking CyPD sequestered substantially higher levels of Ca2+. Our results directly implicate pathological activation of the mitochondrial PTP in the axonal damage occurring during MS and identify CyPD, as well as the PTP, as a potential target for MS neuroprotective therapies.
Cuprizone administration in mice provides a reproducible model of demyelination and spontaneous remyelination, and has been useful in understanding important aspects of human disease, including multiple sclerosis. In this study, we apply high spatial resolution quantitative MRI techniques to establish the spatio-temporal patterns of acute demyelination in C57BL/6 mice after 6 weeks of cuprizone administration, and subsequent remyelination after 6 weeks of post-cuprizone recovery. MRI measurements were complemented with Black Gold II stain for myelin and immunohistochemical stains for associated tissue changes. Gene expression was evaluated using the Allen Gene Expression Atlas. Twenty-five C57BL/6 male mice were split into control and cuprizone groups; MRI data were obtained at baseline, after 6 weeks of cuprizone, and 6 weeks post-cuprizone. High-resolution (100μm isotropic) whole-brain coverage magnetization transfer ratio (MTR) parametric maps demonstrated concurrent caudal-to-rostral and medial-to-lateral gradients of MTR decrease within corpus callosum (CC) that correlated well with demyelination assessed histologically. Our results show that demyelination was not limited to the midsagittal line of the corpus callosum, and also that opposing gradients of demyelination occur in the lateral and medial CC. T2-weighted MRI gray/white matter contrast was strong at baseline, weak after 6 weeks of cuprizone treatment, and returned to a limited extent after recovery. MTR decreases during demyelination were observed throughout the brain, most clearly in callosal white matter. Myelin damage and repair appear to be influenced by proximity to oligodendrocyte progenitor cell populations and exhibit an inverse correlation with myelin basic protein gene expression. These findings suggest that susceptibility to injury and ability to repair vary across the brain, and whole-brain analysis is necessary to accurately characterize this model. Whole-brain parametric mapping across time is essential for gaining a real understanding of disease processes in-vivo. MTR increases in healthy mice throughout adolescence and adulthood were observed, illustrating the need for appropriate age-matched controls. Elucidating the unique and site-specific demyelination in the cuprizone model may offer new insights into in mechanisms of both damage and repair in human demyelinating diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.