ABSTRACT:In this study, the effects of batch processing conditions (foaming time and temperature) and blend composition as well as the effect of incorporating wood fiber into the blends on the crystallinity, sorption behavior of CO 2 , void fraction, and cellular morphology of microcellular foamed high-density polyethylene (HDPE)/polypropylene (PP) blends and their composites with wood fiber were studied. Blending decreased the crystallinity of HDPE and PP and facilitated microcellular foam production in blend materials. The void fraction was strongly dependent on the processing conditions and on blend composition. Foamed samples with a high void fraction were not always microcellular. The addition of wood fiber inhibited microcellular foaming.
BackgroundCassava starch, the economically important agricultural commodity in Thailand, can readily be cast into films. However, the cassava starch film is brittle and weak, leading to inadequate mechanical properties. The properties of starch film can be improved by adding plasticizers and blending with the other biopolymers.ResultsCassava starch (5%w/v) based films plasticized with glycerol (30 g/100 g starch) were characterized with respect to the effect of carboxymethyl cellulose (CMC) concentrations (0, 10, 20, 30 and 40%w/w total solid) and relative humidity (34 and 54%RH) on the mechanical properties of the films. Additionally, intermolecular interactions were determined by Fourier transform infrared spectroscopy (FT-IR), melting temperature by differential scanning calorimetry (DSC), and morphology by scanning electron microscopy (SEM). Water solubility of the films was also determined. Increasing concentration of CMC increased tensile strength, reduced elongation at break, and decreased water solubility of the blended films. FT-IR spectra indicated intermolecular interactions between cassava starch and CMC in blended films by shifting of carboxyl (C = O) and OH groups. DSC thermograms and SEM micrographs confirmed homogeneity of cassava starch-CMC films.ConclusionThe addition of CMC to the cassava starch films increased tensile strength and reduced elongation at break of the blended films. This was ascribed to the good interaction between cassava starch and CMC. Cassava starch-CMC composite films have the potential to replace conventional packaging, and the films developed in this work are suggested to be suitable for low moisture food and pharmaceutical products.
Mimosa pigra peel was sun-dried for 2 days and then ground before being boiled with 30%w/v sodium hydroxide (NaOH) at 100 C for 3 h, washed and then dried at 55 C to constant weight. The cellulose was then synthesized using different NaOH concentrations and monochloroacetic acid (MCA) in isopropyl alcohol (IPA). Effects of various NaOH concentrations on degree of substitution (DS), viscosity and thermal of carboxymethyl cellulose from Mimosa pigra peel (CMC m ) were investigated. The increasing of NaOH concentration resulted in increasing DS and viscosity. However, viscosity of CMC m decreased as temperature increased. Thermal properties were studied using differential scanning calorimetry (DSC). The melting point of the samples decreased as %NaOH increased. The effects of various NaOH concentrations in CMC m synthesis on the mechanical properties and water vapor permeability (WVP) of the CMC m films were investigated as well. With increasing NaOH concentrations (30-50%) were also found to result in improved mechanical properties. However, when the level of NaOH concentration was 60%, the mechanical properties of the CMC films decreased. This result indicates that the highest mechanical properties were found for 50% NaOH-synthesized CMC m films. The WVP of the CMC m films increased as %NaOH increased. In addition, the CMC m films were tested to determine the effect of glycerol as a plasticizer on the mechanical properties. Increasing the amount of glycerol showed an increase in elongation at break but also led to a decrease in tensile strength.
Polymer blends, such as those resulting from recycling postconsumer plastics, often have poor mechanical properties. Microcellular foams have been shown to have the potential to improve properties, and permit higher-value uses of mixed polymer streams. In this study, the effects of microcellular batch processing conditions (foaming time and temperature) and HDPE/PP blend compositions on the cell morphology (the average cell size and cell-population density) and impact strength were studied. Optical microscopy was used to investigate the miscibility and crystalline morphology of the HDPE/PP blends. Pure HDPE and PP did not foam well at any processing conditions. Blending facilitated the formation of microcellular structures in polyolefins because of the poorly bonded interfaces of immiscible HDPE/PP blends, which favored cell nucleation. The experimental results indicated that well-developed microcellular structures are produced in HDPE/PP blends at ratios of 50:50 and 30:70. The cell morphology had a strong relationship with the impact strength of foamed samples. Improvement in impact strength was associated with welldeveloped microcellular morphology. Polym. Eng. Sci. 44:1551-1560, 2004
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.