BackgroundThe elevated levels of inflammatory markers, including C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α), and interleukin 6 (IL6) are supposed to be associated with type 2 diabetes mellitus (T2DM). Frequent high glycemic load (GL) consumption, central obesity, and a lack of physical activity are considered to be T2DM risk factors. This study aimed to determine the difference of these inflammatory markers as well as GL in individuals with versus those without T2DM in rural Thais.MethodsA total of 296 participants aged 35–66 living in Sung Noen District, Nakhon Ratchasima Province, Thailand, were recruited. Blood was collected to evaluate blood glucose levels, lipid profiles, and inflammatory markers. A Semi-food frequency questionnaire was utilized to assess GL followed by socioeconomic and anthropometric assessment. Statistical analysis was subsequently performed.ResultsElevated CRP and IL6 levels were associated with increased risk of developing T2DM [OR (95% CI): 7.51 (2.11, 26.74) and 4.95 (1.28, 19.11)], respectively. There was a trend towards increased risk of T2DM with elevated TNF-α levels [OR (95% CI): 1.56 (0.39, 6.14)]. GL correlated significantly with fasting blood glucose (r = 0.289, P = 0.016), suggesting that it is involved in T2DM in this study group.ConclusionIn this study, CRP, IL6, and TNF-α associated with T2DM. Our findings suggested that these inflammatory markers, especially CRP, may initiate T2DM.Electronic supplementary materialThe online version of this article (doi:10.1186/s12902-017-0189-z) contains supplementary material, which is available to authorized users.
The linkage of obesity, inflammation, and type 2 diabetes mellitus (T2DM) has been extensively investigated for over a decade. However, the association between inflammatory biomarkers, including C-reactive protein (CRP), interleukin 6 (IL-6), and tumor necrosis factor alpha (TNF-α), and T2DM is still inconsistent and limited. Thus, this study is aimed at elucidating the association between inflammatory marker levels and the risk of developing T2DM in many aspects. Among 296 subjects enrolled in 2013, 248 non-T2DM subjects who were completely reinvestigated in 2014 and 2015 were included in a 2-year retrospective analysis. Multivariate logistic regression was performed to evaluate the association of baseline inflammatory marker levels and variation with incidence of T2DM. After the 2-year follow-up, 18.6% of total subjects had developed T2DM. The risk of developing T2DM was significantly increased in subjects with a high level of baseline CRP (OR=4.02, 95% CI: 1.77-9.12, P=0.001), and a stronger impact was found with the combination of high CRP and IL-6 levels (OR=5.11, 95% CI: 1.27-20.49, P=0.021). One-year inflammatory marker variation analysis also revealed the significant association of elevated TNF-α and risk of developing T2DM (OR=4.88, 95% CI: 1.01-23.49, P=0.048). In conclusion, besides consideration of CRP levels alone, our findings suggested that IL-6 outstandingly plays a contributing role in T2DM progression and elevated TNF-α levels over time could be a potential predictor of T2DM.
BackgroundRetinol binding protein 4 (RBP4), a protein secreted by adipocytes and bound in plasma to transthyretin (TTR), has been associated with obesity, the early phase of insulin resistance, metabolic syndrome, and type 2 diabetes mellitus. The objective of this study was to elucidate the relationship between RBP4, TTR, triglyceride (TG) and type 2 diabetes risk in rural Thailand.MethodsWe measured the serum RBP4, TTR, glucose, triglyceride and insulin levels, and glucose tolerance of 167 volunteers from Sung Noen District, Nakhon Ratchasima Province, Thailand. Student’s t-test, Pearson’s correlation and logistic regression analysis were used to evaluate the relationships between RBP4, TTR and type 2 diabetes markers.ResultsRBP4 and TTR levels, as well as homeostatic model assessment of insulin resistance (HOMA-IR) values, were significantly elevated among subjects with high triglyceride levels (p < 0.01, p < 0.05, p < 0.05, respectively). Triglyceride levels correlated with RBP4 (r = 0.34, p < 0.001) and TTR (r = 0.26, p < 0.01) levels, as well as HOMA-IR values (r = 0.16, p < 0.05). After adjustment for age and gender, the risk of hypertriglyceridemia was 3.7 times greater (95% CI =1.42–9.73, p = 0.008) in the highest RBP4 tertile as compared to the lowest tertile. Similarly, the highest TTR and HOMA-IR tertiles had greater risk of hypertriglyceridemia at 3.5 (95% CI = 1.30–9.20, p = 0.01) and 3.6 (95% CI = 1.33–9.58, p = 0.01) times higher than the respective lowest tertiles. The correlation between TTR and blood glucose was statistically significant (r = 0.18, p < 0.05), but not found this relationship in RBP4.ConclusionsThe associations of RBP4 and TTR with hypertriglyceridemia and insulin resistance may have important implications for the risk of heart disease and stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.