The influence of realistic interface morphologies on light trapping in amorphous silicon thin-film solar cells with periodic surface textures is studied. Realistic interface morphologies are obtained by a 3D surface coverage algorithm using the substrate morphology and layer thicknesses as input parameters. Finite difference time domain optical simulations are used to determine the absorption in the individual layers of the thin-film solar cell. The influence of realistic interface morphologies on light trapping is determined by using solar cells structures with the same front and back contact morphologies as a reference. Finally the optimal surface textures are derived.
The front contact has a major impact on the electrical and optical properties of perovskite solar cells. The front contact is part of the junction of the solar cell and must provide lateral charge transport to the terminals and should allow for an efficient light incoupling, while having low optical losses. The complex requirements of the perovskite solar front contact will be described and the optics of the front contact will be investigated. It will be shown that the front contact has a distinct influence on the short-circuit current and energy conversion efficiency. Metal oxide films were investigated as potential front contacts. The incoupling of light in the solar cell is investigated by three-dimensional finite-difference time-domain optical simulations and optical measurements of experimentally realized self-textured zinc oxide films. The zinc oxide films were prepared by metal-organic chemical vapor deposition at low temperatures. Furthermore, the influence of free carrier absorption of metal oxide films on the optics of low bandgap and/or tandem solar cells is investigated. Guidelines are provided on how to choose the doping concentration and thickness of the metal oxide films. Finally, it will be shown that by selecting an optimal front contact design the short-circuit current and energy conversion efficiency can be increased by at least 15%.
Light trapping and photon management of silicon thin film solar cells can be improved by a separate optimization of the front and back contact textures. A separate optimization of the front and back contact textures is investigated by optical simulations taking realistic device geometries into consideration. The optical simulations are confirmed by experimentally realized 1 μm thick microcrystalline silicon solar cells. The different front and back contact textures lead to an enhancement of the short circuit current by 1.2 mA/cm2 resulting in a total short circuit current of 23.65 mA/cm2 and an energy conversion efficiency of 8.35%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.