The distal radius bears unique forces during gymnastic activity. Its relatively simple anatomy, minimal soft tissue envelope and varied composition make the distal radius ideal for evaluating the effects of loading on bone properties. For 56 premenarcheal gymnasts and non-gymnasts, ultradistal and 1/3 distal radius DXA scans measured bone mineral content (BMC), areal bone mineral density and projected area. Simplified geometric models were used to generate bone mineral apparent density (BMAD), geometric indices, strength indices and fall strength ratios. Ratios of regional BMC vs. total body fat free mass (FFM) were calculated. Separate Tanner I and II analyses of covariance adjusted bone parameters for age and height. Ratios were compared using maturity-matched analyses of variance. At the 1/3 region, periosteal width, BMC, cortical cross-sectional area, and section modulus were greater in gymnasts than non-gymnasts (p<0.05); 1/3 BMAD means were equivalent. Ultradistal BMAD, BMC and index for structural strength in axial compression were higher in gymnasts than non-gymnasts; ultradistal periosteal width was only larger in Tanner I gymnasts. Fall strength ratios and BMC/FFM ratios were greater in gymnasts (p<0.05). Geometric and volumetric responses to mechanical loading are site-specific during late childhood and early adolescence.The distal radius bears unique forces during gymnastic activity, and fan beam magnification error is negligible at this site, making it ideal for DXA evaluation of associated bone properties. For 56 premenarcheal gymnasts and non-gymnasts, ultradistal and 1/3 distal radius DXA scans measured bone mineral content, areal bone mineral density and projected area. Simplified geometric models were used to generate bone mineral apparent density, geometric indices, strength indices and fall strength ratios. Ratios of regional bone mineral content vs. total body fat free mass were calculated. Separate Tanner I and II analyses of covariance adjusted bone parameters for age and height. Ratios were compared using maturity-matched analyses of variance. At the 1/3 region, periosteal width, bone mineral content, cortical cross-sectional area, and section modulus were greater in gymnasts than non-gymnasts (p<0.05); 1/3 bone mineral apparent densities were equivalent. Gymnasts' ultradistal bone mineral apparent density, bone mineral content and index for structural strength in axial compression were higher; ultradistal periosteal width was only larger in Tanner I gymnasts. Fall strength ratios and bone mineral content vs. fat-free mass were greater in gymnasts (p<0.05). Gymnasts' geometric and volumetric responses to mechanical loading are site-specific during late childhood and early adolescence.
STUDY DESIGN Prospective analysis of a longitudinal cohort with an embedded comparison group at a single time point. OBJECTIVES To determine the feasibility and effectiveness of an outpatient rehabilitation protocol that includes movement symmetry biofeedback on functional and biomechanical outcomes after total knee arthroplasty (TKA). BACKGROUND TKA reduces pain and improves functional ability, but many patients experience strength deficits and movement abnormalities in the operated limb, despite outpatient rehabilitation. These asymmetries increase load on the nonoperated limb, and greater asymmetry is related to worse functional outcomes. METHODS Biomechanical and functional metrics were assessed 2 to 3 weeks prior to TKA, at discharge from outpatient physical therapy, and 6 months after TKA in 11 patients (9 men, 2 women; mean ± SD age, 61.4 ± 5.8 years; body mass index, 33.1 ± 5.4 kg/m2) who received 6 to 8 weeks of outpatient physical therapy that included specialized symmetry training. Six-month outcomes were compared to a control group, matched by age, body mass index, and sex (9 men, 2 women; mean ± SD age, 61.8 ± 5 years; body mass index, 34.3 ± 5.1 kg/m2), that did not receive specialized symmetry retraining. RESULTS Of the 11 patients who received added symmetry training, 9 demonstrated clinically meaningful improvements that exceeded the minimal detectable change for all performance-based functional tests at 6 months post-TKA compared to pre-TKA. Six months after TKA, when walking, patients who underwent symmetry retraining had greater knee extension during midstance and had mean sagittal knee moments that were more symmetrical, biphasic, and more representative of normal knee kinetics compared to patients who did not undergo symmetry training. No patients experienced adverse events as the result of the protocol. CONCLUSION Adding symmetry retraining to postoperative protocols is clinically viable, safe, and may have additional benefits compared to rehabilitation protocols that focus on range of motion, strength, and return to independence.
Osteoarthritis (OA) progression in the contralateral limb after unilateral total knee arthroplasty (TKA) may be related to altered and asymmetrical movement patterns that overload the contralateral joints. The purpose of this study was to determine if biomechanical factors after unilateral TKA were associated with future contralateral TKA. One hundred and fifty-eight individuals who underwent unilateral TKA completed three dimensional motion analysis 6-24 months after unilateral TKA (baseline). Subjects were re-contacted for follow-up (mean 5.89 years after baseline testing) to determine if they had undergone a contralateral TKA. Biomechanical variables from gait at baseline were compared between those who did and did not undergo contralateral TKA at followup using one-way ANOVAs. Odds ratios were calculated for variables found to be significant in the ANOVA models. Individuals who underwent contralateral TKA had less knee flexion excursion (10.5˚vs. 12.1˚; p ¼ 0.032) and less knee extension excursion (8.2˚vs. 9.6˚; p ¼ 0.035) at baseline on the operated side during walking. Individuals who underwent contralateral TKA also had less knee flexion excursion on the contralateral limb at baseline (11.9˚vs. 14.0˚; p ¼ 0.017). For every additional degree of knee flexion excursion on the contralateral knee at baseline, there was a 9.1% reduction in risk of future contralateral TKA. Individuals who walked with stiffer gait patterns were more likely to undergo future contralateral TKA. Clinical Significance: Altered movement patterns after surgery may increase the risk for contralateral TKA. Knee excursion is an important metric to include in outcome studies and may serve as a target of rehabilitation after TKA. ß
Background Although total knee arthroplasty reduces pain and improves function, patients continue to walk with asymmetrical movement patterns, that may affect muscle activation and joint loading patterns. The purpose of this study was to evaluate the specific biomechanical abnormalities that persist after total knee arthroplasty and examine the neuromuscular mechanisms that may contribute to these asymmetries. Methods Dynamic joint stiffness at the hip, knee and ankle, as well as co-contraction at the knee and ankle, were compared between the operated and non-operated limbs of 32 subjects who underwent total knee arthroplasty and 21 subjects without lower extremity impairment. Dynamic joint stiffness was calculated as the slope of the line of joint moment plotted as a function of joint angle. Findings Subjects after total knee arthroplasty demonstrated higher dynamic joint stiffness in the operated knee compared to the non-operated knee (0.056 (0.023) Nm/kg/m/deg vs. 0.043 (0.016) Nm/kg/m/deg, P=0.003) and the knees from a control group without lower extremity pathology (controls: 0.042(0.015) Nm/kg/m/deg, P =0.017). No differences were found between limbs or groups for dynamic joint stiffness at the hip or ankle. There was no relationship between dynamic joint stiffness at the knee and ankle and the amount of co-contraction between antagonistic muscles at those joints. Interpretation Patients after total knee arthroplasty walk with less knee joint excursion and greater knee stiffness, although no differences were found between groups for stiffness at the hip or ankle. Mechanisms other than co-contraction are likely the underlying cause of the altered knee mechanics. These findings are clinically relevant because the goal should be to create interventions to reduce these abnormalities and increase function.
Knee joint hypermobility may be related to talonavicular osteoarthritis and to ankle and foot symptoms. This article is protected by copyright. All rights reserved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.