Alport syndrome is a rare hereditary renal disorder with no etiologic therapy. We found that osteopontin (OPN) is highly expressed in the renal tubules of the Alport mouse and plays a causative pathological role. OPN genetic deletion ameliorated albuminuria, hypertension, tubulointerstitial proliferation, renal apoptosis, and hearing and visual deficits in the Alport mouse. In Alport renal tubules we found extensive cholesterol accumulation and increased protein expression of dynamin-3 (DNM3) and LDL receptor (LDLR) in addition to dysmorphic mitochondria with defective bioenergetics. Increased pathological cholesterol influx was confirmed by a remarkably increased uptake of injected DiI-LDL cholesterol by Alport renal tubules, and by the improved lifespan of the Alport mice when crossed with the Ldlr-/- mice with defective cholesterol influx. Moreover, OPN-deficient Alport mice demonstrated significant reduction of DNM3 and LDLR expression. In human renal epithelial cells, overexpressing DNM3 resulted in elevated LDLR protein expression and defective mitochondrial respiration. Our results suggest a potentially new pathway in Alport pathology where tubular OPN causes DNM3- and LDLR-mediated enhanced cholesterol influx and impaired mitochondrial respiration.
The regulation of LDL cholesterol uptake through LDLR-mediated endocytosis is an important area of study in various major pathologies including metabolic disorder, cardiovascular disease, and kidney disease. Currently, there is no available method to assess LDL uptake while simultaneously monitoring for health of the cells. The current study presents a protocol, using a live cell imaging analysis system, to acquire serial measurements of LDL influx with concurrent monitoring for cell health. This novel technique is tested in three human cell lines (hepatic, renal tubular epithelial, and coronary artery endothelial cells) over a four-hour time course. Moreover, the sensitivity of this technique is validated with well-known LDL uptake inhibitors, Dynasore and recombinant PCSK9 protein, as well as by an LDL uptake promoter, Simvastatin. Taken together, this method provides a medium-to-high throughput platform for simultaneously screening pharmacological activity as well as monitoring of cell morphology, hence cytotoxicity of compounds regulating LDL influx. The analysis can be used with different imaging systems and analytical software.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.