SUMMARY Numerous chromatin regulators are required for embryonic stem (ES) cell self-renewal and pluripotency, but few have been studied in detail. Here, we examine the roles of several chromatin regulators whose loss affects the pluripotent state of ES cells. We find that Mbd3 and Brg1 antagonistically regulate a common set of genes by regulating promoter nucleosome occupancy. Furthermore, both Mbd3 and Brg1 play key roles in the biology of 5-hydroxymethylcytosine (5hmC): Mbd3 co-localizes with Tet1 and 5hmC in vivo, Mbd3 knockdown preferentially affects expression of 5hmC-marked genes, Mbd3 localization is Tet1-dependent, and Mbd3 preferentially binds to 5hmC relative to 5-methylcytosine in vitro. Finally, both Mbd3 and Brg1 are themselves required for normal levels of 5hmC in vivo. Together, our results identify an effector for 5hmC, and reveal that control of gene expression by antagonistic chromatin regulators is a surprisingly common regulatory strategy in ES cells.
Numerous chromatin-remodeling factors are regulated by interactions with RNA, although the contexts and functions of RNA binding are poorly understood. Here we show that R-loops, RNA:DNA hybrids consisting of nascent transcripts hybridized to template DNA, modulate the binding of two key chromatin regulatory complexes, Tip60–p400 and polycomb repressive complex 2 (PRC2) in mouse embryonic stem cells (ESCs). Like PRC2, the Tip60–p400 histone acetyltransferase complex binds to nascent transcripts, but unlike PRC2, transcription promotes chromatin binding by Tip60–p400. Interestingly, we observed higher Tip60–p400 and lower PRC2 levels at genes marked by promoter-proximal R-loops. Furthermore, disruption of R-loops broadly reduced Tip60–p400 and increased PRC2 occupancy genome-wide. Consistent with these alterations, ESCs with reduced R-loops exhibited impaired differentiation. These results show that R-loops act both positively and negatively to modulate the recruitment of key pluripotency regulators.
In embryonic stem cells (ESCs), the Tip60 histone acetyltransferase activates genes required for proliferation and silences genes that promote differentiation. Here we show that the class II histone deacetylase Hdac6 co-purifies with Tip60-p400 complex from ESCs. Hdac6 is necessary for regulation of most Tip60-p400 target genes, particularly those repressed by the complex. Unlike differentiated cells, where Hdac6 is mainly cytoplasmic, Hdac6 is largely nuclear in ESCs, neural stem cells (NSCs), and some cancer cell lines, and interacts with Tip60-p400 in each. Hdac6 localizes to promoters bound by Tip60-p400 in ESCs, binding downstream of transcription start sites. Surprisingly, Hdac6 does not appear to deacetylate histones, but rather is required for Tip60-p400 binding to many of its target genes. Finally, we find that, like canonical subunits of Tip60-p400, Hdac6 is necessary for robust ESC differentiation. These data suggest that Hdac6 plays a major role in the modulation of Tip60-p400 function in stem cells.DOI: http://dx.doi.org/10.7554/eLife.01557.001
The gut microbiome is a malleable microbial community that can remodel in response to a number of factors, including diet, and contribute to the development of several chronic diseases, including atherosclerosis. We devised an in vitro screening protocol of the mouse gut microbiome to discover molecules that can selectively modify bacterial growth. This approach was used to identify cyclic d,l -α-peptides that remodeled the Western diet (WD) gut microbiome toward the low fat diet microbiome state. Daily oral administration of the peptides in WD-fed LDLr −/− mice reduced plasma total cholesterol levels and atherosclerotic plaques. Depletion of the microbiome with antibiotics abrogated these effects. Peptide treatment reprogrammed the microbiome transcriptome, suppressed the production of pro-inflammatory cytokines (including IL-6, TNF-α, and IL-1β), rebalanced levels of short-chain fatty acids and bile acids, improved gut barrier integrity, and increased intestinal T regulatory cells. Directed chemical manipulation provides an additional tool to decipher the chemical biology of the gut microbiome and may advance microbiome-targeted therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.