Research into influence campaigns on Twitter has mostly relied on identifying malicious activities from tweets obtained via public APIs. By design, these approaches ignore deleted tweets. However, bad actors can delete content strategically to manipulate the system. Here, we provide the first exhaustive, large-scale analysis of anomalous deletion patterns involving more than a billion deletions by over 11 million accounts. Estimates based on publicly available Twitter data underestimate the true deletion volume. A small fraction of accounts delete a large number of tweets daily. We uncover two abusive behaviors that exploit deletions. First, limits on tweet volume are circumvented, allowing certain accounts to flood the network with over 26 thousand daily tweets. Second, coordinated networks of accounts engage in repetitive likes and unlikes of content that is eventually deleted, which can manipulate ranking algorithms. These kinds of abuse can be exploited to amplify content and inflate popularity, while evading detection. Our study provides platforms and researchers with new methods for identifying social media abuse.
Social media are utilized by millions of citizens to discuss important political issues. Politicians use these platforms to connect with the public and broadcast policy positions. Therefore, data from social media has enabled many studies of political discussion. While most analyses are limited to data from individual platforms, people are embedded in a larger information ecosystem spanning multiple social networks.Here we describe and provide access to the Indiana University 2022 U.S. Midterms Multi-Platform Social Media Dataset (MEIU22), a collection of social media posts from Twitter, Facebook, Instagram, Reddit, and 4chan. MEIU22 links to posts about the midterm elections based on a comprehensive list of keywords and tracks the social media accounts of 1,210 candidates from October 1 to December 25, 2022. We also publish the source code of our pipeline to enable similar multi-platform research projects.
Social media are utilized by millions of citizens to discuss important political issues. Politicians use these platforms to connect with the public and broadcast policy positions. Therefore, data from social media has enabled many studies of political discussion. While most analyses are limited to data from individual platforms, people are embedded in a larger information ecosystem spanning multiple social networks. Here we describe and provide access to the Indiana University 2022 U.S. Midterms Multi-Platform Social Media Dataset (MEIU22), a collection of social media posts from Twitter, Facebook, Instagram, Reddit, and 4chan. MEIU22 links to posts about the midterm elections based on a comprehensive list of keywords and tracks the social media accounts of 1,011 candidates from October 1 to December 25, 2022. We also publish the source code of our pipeline to enable similar multi-platform research projects.
Research into influence campaigns on Twitter has mostly relied on identifying malicious activities from tweets obtained via public APIs. These APIs provide access to public tweets that have not been deleted. However, bad actors can delete content strategically to manipulate the system. Unfortunately, estimates based on publicly available Twitter data underestimate the true deletion volume. Here, we provide the first exhaustive, large-scale analysis of anomalous deletion patterns involving more than a billion deletions by over 11 million accounts. We find that a small fraction of accounts delete a large number of tweets daily. We also uncover two abusive behaviors that exploit deletions. First, limits on tweet volume are circumvented, allowing certain accounts to flood the network with over 26 thousand daily tweets. Second, coordinated networks of accounts engage in repetitive likes and unlikes of content that is eventually deleted, which can manipulate ranking algorithms. These kinds of abuse can be exploited to amplify content and inflate popularity, while evading detection.Our study provides platforms and researchers with new methods for identifying social media abuse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.