Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree–Fock, Kohn–Sham, multiconfigurational self-consistent-field, Møller–Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic-structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge-origin-invariant manner. Frequency-dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one-, two-, and three-photon processes. Environmental effects may be included using various dielectric-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platforms.
A restricted active space (RAS) wave function is introduced, which encompasses many commonly used restricted CI expansions. A highly vectorized algorithm is developed for full CI and other RAS calculations. The algorithm is based on Slater determinants expressed as products of alphastrings and betastrings and lends itself to a matrix indexing C(Iα, Iβ ) of the CI vector. The major features are: (1) The intermediate summation over determinants is replaced by two intermediate summations over strings, the number of which is only the square root of the number of determinants. (2) Intermediate summations over strings outside the RAS CI space is avoided and RAS calculations are therefore almost as efficient as full CI calculations with the same number of determinants. (3) An additional simplification is devised for MS =0 states, halving the number of operations. For a case with all single and double replacements out from 415 206 Slater determinants yielding 1 136 838 Slater determinants each CI iteration takes 161 s on an IBM 3090/150(VF).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.