Estimating haplotype frequencies is important in e.g. forensic genetics, where the frequencies are needed to calculate the likelihood ratio for the evidential weight of a DNA profile found at a crime scene. Estimation is naturally based on a population model, motivating the investigation of the Fisher-Wright model of evolution for haploid lineage DNA markers. An exponential family (a class of probability distributions that is well understood in probability theory such that inference is easily made by using existing software) called the 'discrete Laplace distribution' is described. We illustrate how well the discrete Laplace distribution approximates a more complicated distribution that arises by investigating the well-known population genetic Fisher-Wright model of evolution by a single-step mutation process. It was shown how the discrete Laplace distribution can be used to estimate haplotype frequencies for haploid lineage DNA markers (such as Y-chromosomal short tandem repeats), which in turn can be used to assess the evidential weight of a DNA profile found at a crime scene. This was done by making inference in a mixture of multivariate, marginally independent, discrete Laplace distributions using the EM algorithm to estimate the probabilities of membership of a set of unobserved subpopulations. The discrete Laplace distribution can be used to estimate haplotype frequencies with lower prediction error than other existing estimators. Furthermore, the calculations could be performed on a normal computer. This method was implemented in the freely available open source software R that is supported on Linux, MacOS and MS Windows.
Methods for clustering in unsupervised learning are an important part of the statistical toolbox in numerous scientific disciplines. Tewari, Giering, and Raghunathan (2011) proposed to use so-called Gaussian mixture copula models (GMCM) for general unsupervised learning based on clustering. Li, Brown, Huang, and Bickel (2011) independently discussed a special case of these GMCMs as a novel approach to meta-analysis in highdimensional settings. GMCMs have attractive properties which make them highly flexible and therefore interesting alternatives to other well-established methods. However, parameter estimation is hard because of intrinsic identifiability issues and intractable likelihood functions. Both aforementioned papers discuss similar expectation-maximization-like algorithms as their pseudo maximum likelihood estimation procedure. We present and discuss an improved implementation in R of both classes of GMCMs along with various alternative optimization routines to the EM algorithm. The software is freely available in the R package GMCM. The implementation is fast, general, and optimized for very large numbers of observations. We demonstrate the use of package GMCM through different applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.