MSMEG_2295 is a TetR family protein encoded by the first gene of a Mycobacterium smegmatis (Msm) operon that expresses the gene for DinB2 (MSMEG_2294), a translesion DNA repair enzyme. We have carried out investigations to understand its function by performing DNA binding studies and gene knockout experiments. We found that the protein binds to a conserved inverted repeat sequence located upstream of the dinB2 operon and several other genes. Using a knockout of MSMEG_2295, we show that MSMEG_2295 controls the expression of at least five genes, the products of which could potentially influence carbohydrate and fatty acid metabolism as well as antibiotic and oxidative stress resistance. We have demonstrated that MSMEG_2295 is a repressor by performing complementation analysis. Knocking out of MSMEG_2295 had a significant impact on pyruvate metabolism. Pyruvate dehydrogenase activity was virtually undetectable in ΔMSMEG_2295, although in the complemented strain, it was high. We also show that knocking out of MSMEG_2295 causes resistance to H2O2, reversed in the complemented strain. We have further found that the mycobacterial growth inhibitor plumbagin, a compound of plant origin, acts as an inducer of MSMEG_2295 regulated genes. We, therefore, establish that MSMEG_2295 functions by exerting its role as a repressor of multiple Msm genes and that by doing so, it plays a vital role in controlling pyruvate metabolism and response to oxidative stress.
In Mycobacterium smegmatis (renamed Mycolicibacterium smegmatis ), glucose 6-phosphate (G6P) level is exceptionally high as compared to other bacteria, E. coli for example. Earlier investigations have indicated that G6P protects M. smegmatis (Msm) against oxidative stress-inducing agents. G6P is a glycolytic intermediate formed either directly through the phosphorylation of glucose or indirectly via the gluconeogenic pathway. Its consumption is catalysed by several enzymes, one of which being the NADPH dependent G6P dehydrogenase (G6PDH) encoded by zwf (msmeg_0314). While investigating the extent to which the carbon sources glucose and glycerol influence Msm growth, we observed that intracellular concentration of G6P was lower in the former’s presence than the latter. We could correlate this difference with that in the growth rate, which was higher in glycerol than glucose. We also found that lowering of G6P content in glucose-grown cells was triggered by the induced expression of zwf and the resultant increase in G6PDH activity. When we silenced zwf using CRISPR-Cas9 technology, we observed a significant rise in the growth rate of Msm. Therefore, we have found that depletion of G6P in glucose-grown cells due to increased G6PDH activity is at least one reason why the growth rate of Msm in glucose is less than glycerol. However, we could not establish a similar link-up between slow growth in glucose and lowering of G6P level in the case of Mycobacterium tuberculosis (Mtb). Mycobacteria, therefore, may have evolved diverse mechanisms to ensure that they use glycerol preferentially over glucose for their growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.