Aluminum and tin salen complexes have been shown to effectively catalyze the ring-opening polymerization (ROP) of trimethylene carbonate (TMC) to polycarbonate. The most active salen derivative in each instance contained a phenylene backbone with chloro substituents in the 3,5-positions of the phenolate rings, with the aluminum derivatives being significantly more active than their tin(IV) counterparts. Importantly, the resultant polycarbonate was shown by 1 H NMR to be void of ether linkages. The reaction was demonstrated to proceed via a mechanism first order in both [catalyst] and [monomer] and to involve TMC ring-opening by way of acyl oxygen bond cleavage. Consistent with a reaction pathway involving an insertion of the monomer into the metal-nucleophile bond (e.g., Al-Cl or Sn-Cl), the activation parameters were determined to be ∆H q ) 51 kJ/mol and ∆S q ) -141 J/(mol deg).
Schiff base derivatives of the biometals (Zn, Mg, Ca) in the presence of anion initiators have been shown to be very effective catalysts for the ring-opening polymerization of trimethylene carbonate (TMC or 1,3-dioxan-2-one) to poly(TMC) devoid of oxetane linkages. The order of catalytic activity as a function of metal was found to be Ca(II) . Mg(II) > Zn(II). Optimization of the calcium system was achieved utilizing a salen ligand with tert-butyl substituents in the 3,5-positions of the phenolate rings and an ethylene backbone for the diimine along with an azide ion initiator. These conditions led to a TOF of 1286 h -1 for a melt polymerization carried out at 86 °C. Solution studies in tetrachloroethane demonstrated the polymerization reaction to proceed via a mechanism first order in [monomer], [(salen)Ca], and [anion initiator] and to involve TMC ring-opening by way of acyl-oxygen bond cleavage. The activation parameters were determined to be ∆H q ) 20.1 kJ/mol and ∆S q ) -128 J/(mol K).
Metal salen derivatives of chromium and aluminum, along with n-Bu4NX (X = Cl or N3) salts, have been shown to be effective catalysts for the selective coupling of CO2 and oxetane (trimethylene oxide) to provide the corresponding polycarbonate with only trace quantities of ether linkages. The formation of copolymer is suggested, based on circumstantial evidence, not to proceed via the intermediacy of trimethylene carbonate, which was observed as a minor product of the coupling reaction. For a reaction catalyzed by (salen)CrCl in the presence of n-Bu4NN3 as the cocatalyst, both matrix-assisted laser desorption ionization time-of-flight mass spectrometry and infrared spectroscopy revealed an azide end group in the copolymer.
In Table 5 the rate constants should be listed as k obsd in units of h -1 . Similarly, Figure 7 should be defined as a plot of ln k obsd vs ln [Al], illustrating the first-order dependence of the ROP process on the (salen)AlCl catalyst concentration.
A longer lifespan is still being sought for biomaterials used for joint repair. We developed a new nanocomposite material of polytrimethylene carbonate (PTMC), hydroxyapatite (HAP), and multiwalled carbon nanotubes (MWNT) to mimic real cartilage. Experimental results were compared with those of natural cartilage and the conventional joint replacement material ultrahigh-molecular-weight polyethylene (UHMWPE). Friction experiments showed that our developed composite material had a coefficient of friction close to that of articular cartilage. Nanoindentation experiments indicated that the surface elastic behavior was similar to that of cartilage. The surface attraction forces on a silicon atomic force microscope tip were much higher for cartilage than those for the other two materials. These results hold promise for this artificial cartilage composite material’s performance in vivo, following further experimental investigations and chemical modifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.