Quantitative assessment of motor performance is important for diseases of motor control, such as Parkinson's disease (PD). Manual tracking tasks are well suited for motor assessment, as they can be performed concomitantly with brain mapping techniques. Here we propose utilizing second-order linear dynamical systems to assess manual pursuit tracking performance. With the desired trajectory as the input, and the subject's actual motor response as the output, a linear model characterized by natural frequency and damping ratio is identified for each subject. We applied this method to 10 PD subjects (on and off L: -dopa medication) and 10 normal subjects performing a multi-frequency sinusoidal tracking task. Model parameters were more sensitive than overall tracking errors in determining significant differences between groups. The effect of L: -dopa medication was to reduce the damping ratio and make the range in natural frequency across individuals approach that of normal subjects. We interpret the changes in damping ratio and natural frequency as possibly related to suppression of compensatory cerebellar activity and/or improvement of motor program selection, and the changes in natural frequency as an implicit strategy to maintain settling time in the face of reduce damping ratio. Our results suggest that simple linear dynamical system models can be a powerful method to assess tracking performance in Parkinson's disease because of the additional insight they can provide into neurological processes.
When faced with visual uncertainty during motor performance, humans rely more on predictive forward models and proprioception and attribute lesser importance to the ambiguous visual feedback. Though disrupted predictive control is typical of patients with cerebellar disease, sensorimotor deficits associated with the involuntary and often unconscious nature of l-DOPA-induced dyskinesias in Parkinson’s disease (PD) suggests dyskinetic subjects may also demonstrate impaired predictive motor control.Methods: We investigated the motor performance of 9 dyskinetic and 10 non-dyskinetic PD subjects on and off l-DOPA, and of 10 age-matched control subjects, during a large-amplitude, overlearned, visually guided tracking task. Ambiguous visual feedback was introduced by adding “jitter” to a moving target that followed a Lissajous pattern. Root mean square (RMS) tracking error was calculated, and ANOVA, robust multivariate linear regression, and linear dynamical system analyses were used to determine the contribution of speed and ambiguity to tracking performance.Results: Increasing target ambiguity and speed contributed significantly more to the RMS error of dyskinetic subjects off medication. l-DOPA improved the RMS tracking performance of both PD groups. At higher speeds, controls and PDs without dyskinesia were able to effectively de-weight ambiguous visual information.Conclusion: PDs’ visually guided motor performance degrades with visual jitter and speed of movement to a greater degree compared to age-matched controls. However, there are fundamental differences in PDs with and without dyskinesia: subjects without dyskinesia are generally slow, and less responsive to dynamic changes in motor task requirements, but in PDs with dyskinesia, there was a trade-off between overall performance and inappropriate reliance on ambiguous visual feedback. This is likely associated with functional changes in posterior parietal–ponto–cerebellar pathways.
Abstract-Smart powered wheelchairs offer the possibility of enhanced mobility to a large and growing populationmost notably older adults-and a key feature of such a chair is collision avoidance. Sensors are required to detect nearby obstacles; however, complete sensor coverage of the immediate neighbourhood is challenging for reasons including financial, computational, aesthetic, user identity and sensor reliability. It is also desirable to predict the future motion of the wheelchair based on potential input signals; however, direct modeling and control of commercial wheelchairs is not possible because of proprietary internals and interfaces. In this paper we design a dynamic egocentric occupancy map which maintains information about local obstacles even when they are outside the field of view of the sensor system, and we construct a neural network model of the mapping between joystick inputs and wheelchair motion. Using this map and model infrastructure, we can evaluate a variety of risk assessment metrics for collaborative control of a smart wheelchair. One such metric is demonstrated on a wheelchair with a single RGB-D camera in two scenarios: a doorway traversal where the near edge of the doorframe is no longer visible to the camera as the chair makes its turn, and a longer navigation through a typical cluttered office environment.
The pathophysiology of L-dopa-induced dyskinesias (LIDs) in Parkinson's disease (PD) remains poorly understood. The presence of superimposed LIDs clearly differentiates motor performance of dyskinetic from non-dyskinetic PD subjects when they are on medication, but here, we investigated whether their respective motor performance differs while subjects are off L-dopa medication and LIDs are not apparent. We assessed the motor performance of nine dyskinetic and ten non-dyskinetic PD subjects off L-dopa, and of ten age-matched control subjects, during a visually guided tracking task. As previous studies have suggested that linear dynamical system (LDS) models are useful to assess motor performance in PD in addition to overall tracking error, we used LDS models to assess the damping ratio parameter of motor behavior while controlling for disease severity. While overall tracking error did not significantly differ across groups, dyskinetic PD subjects demonstrated a significantly decreased mean damping ratio compared with control and non-dyskinetic PD subjects. For both groups, greater disease severity significantly predicted a lower damping ratio, but even after controlling for disease severity, the damping ratio for dyskinetic subjects was significantly lower. Our results demonstrate, somewhat counter-intuitively, that motor performance of dyskinetic and non-dyskinetic PD subjects differ, even off L-dopa when no dyskinesias are seen. A decreased damping ratio is indicative of a tendency to overshoot a target during motor performance, similar to the dysmetria found in cerebellar patients. We discuss the possibility of motor abnormalities in dyskinetic PD patients off medication in relation to altered functional cerebellar changes described in PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.