Conserving landscape connections among favorable habitats is a widely used strategy to maintain populations in an increasingly fragmented world. A species can then exist as a metapopulation consisting of several subpopulations connected by dispersal. Our study focuses on the importance of human–wildlife coexistence areas in maintaining connectivity among primary habitats of small ungulates within and outside protected areas in a large landscape in central India. We used geospatial information and species presence data to model the suitable habitats, core habitats, and connectivity corridors for four antelope species in an ~89,000 km2 landscape. We found that about 63% of the core habitats, integrated across the four species, lie outside the protected areas. We then measured connectivity in two scenarios: the present setting, and a hypothetical future setting – where habitats outside protected areas are lost. We also modelled the areas with a high risk of human-influenced antelope mortality using eco-geographical variables and wildlife mortality records. Overall, we found that the habitats in multiple-use forests play a central role in maintaining the connectivity network for antelopes. Sizable expanses of privately held farmlands and plantations also contribute to the essential movement corridors. Some perilous patches with greater mortality risk for species require mitigation measures such as underpasses, overpasses, and fences. Greater conservation efforts are needed in the spaces of human–wildlife coexistence to conserve the habitat network of small ungulates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.