The internal representations of early deep artificial neural networks (ANNs) were found to be remarkably similar to the internal neural representations measured experimentally in the primate brain. Here we ask, as deep ANNs have continued to evolve, are they becoming more or less brain-like? ANNs that are most functionally similar to the brain will contain mechanisms that are most like those used by the brain. We therefore developed Brain-Score -a composite of multiple neural and behavioral benchmarks that score any ANN on how similar it is to the brain's mechanisms for core object recognition -and we deployed it to evaluate a wide range of state-of-the-art deep ANNs. Using this scoring system, we here report that: (1) DenseNet-169, CORnet-S and ResNet-101 are the most brain-like ANNs.(2) There remains considerable variability in neural and behavioral responses that is not predicted by any ANN, suggesting that no ANN model has yet captured all the relevant mechanisms.(3) Extending prior work, we found that gains in ANN ImageNet performance led to gains on Brain-Score. However, correlation weakened at ≥ 70% top-1 ImageNet performance, suggesting that additional guidance from neuroscience is needed to make further advances in capturing brain mechanisms. (4) We uncovered smaller (i.e. less complex) ANNs that are more brain-like than many of the best-performing ImageNet models, which suggests the opportunity to simplify ANNs to better understand the ventral stream. The scoring system used here is far from complete. However, we propose that evaluating and tracking model-benchmark correspondences through a Brain-Score that is regularly updated with new brain data is an exciting opportunity: experimental benchmarks can be used to guide machine network evolution, and machine networks are mechanistic hypotheses of the brain's network and thus drive next experiments. To facilitate both of these, we release Brain-Score.org: a platform that hosts the neural and behavioral benchmarks, where ANNs for visual processing can be submitted to receive a Brain-Score and their rank relative to other models, and where new experimental data can be naturally incorporated. computational neuroscience | object recognition | deep neural networks
Particular deep artificial neural networks (ANNs) are today’s most accurate models of the primate brain’s ventral visual stream. Using an ANN-driven image synthesis method, we found that luminous power patterns (i.e., images) can be applied to primate retinae to predictably push the spiking activity of targeted V4 neural sites beyond naturally occurring levels. This method, although not yet perfect, achieves unprecedented independent control of the activity state of entire populations of V4 neural sites, even those with overlapping receptive fields. These results show how the knowledge embedded in today’s ANN models might be used to noninvasively set desired internal brain states at neuron-level resolution, and suggest that more accurate ANN models would produce even more accurate control.
242 words 6Significance Statement 97 words 2 7
Primates, including humans, can typically recognize objects in visual images at a glance despite naturally occurring identity-preserving image transformations (e.g., changes in viewpoint). A primary neuroscience goal is to uncover neuron-level mechanistic models that quantitatively explain this behavior by predicting primate performance for each and every image. Here, we applied this stringent behavioral prediction test to the leading mechanistic models of primate vision (specifically, deep, convolutional, artificial neural networks; ANNs) by directly comparing their behavioral signatures against those of humans and rhesus macaque monkeys. Using high-throughput data collection systems for human and monkey psychophysics, we collected more than one million behavioral trials from 1472 anonymous humans and five male macaque monkeys for 2400 images over 276 binary object discrimination tasks. Consistent with previous work, we observed that state-of-the-art deep, feedforward convolutional ANNs trained for visual categorization (termed DCNN models) accurately predicted primate patterns of object-level confusion. However, when we examined behavioral performance for individual images within each object discrimination task, we found that all tested DCNN models were significantly nonpredictive of primate performance and that this prediction failure was not accounted for by simple image attributes nor rescued by simple model modifications. These results show that current DCNN models cannot account for the image-level behavioral patterns of primates and that new ANN models are needed to more precisely capture the neural mechanisms underlying primate object vision. To this end, large-scale, high-resolution primate behavioral benchmarks such as those obtained here could serve as direct guides for discovering such models. Recently, specific feedforward deep convolutional artificial neural networks (ANNs) models have dramatically advanced our quantitative understanding of the neural mechanisms underlying primate core object recognition. In this work, we tested the limits of those ANNs by systematically comparing the behavioral responses of these models with the behavioral responses of humans and monkeys at the resolution of individual images. Using these high-resolution metrics, we found that all tested ANN models significantly diverged from primate behavior. Going forward, these high-resolution, large-scale primate behavioral benchmarks could serve as direct guides for discovering better ANN models of the primate visual system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.