Engineered cementitious composite (ECC) is a new generation of fiber-reinforced concrete with high ductility and exceptional crack control capabilities. However, ECC can suffer a substantial reduction in ductility when exposed to elevated temperatures resulting in a loss of crack-bridging ability. In this study, the effect of adding basalt fiber (BF), which is an inorganic fiber with high-temperature resistance for the production of ECC, was studied. Moreover, the change in the mechanical properties of ECC, including compressive, tensile, and flexural strength, was experimentally investigated under elevated temperatures up to 400 °C. The results showed that the addition of BF to reinforced ECC improved the tensile and flexural strength of concrete effectively, but compressive strength marginally decreased. A significant decrease was observed in the range from 300 to 400 °C, while it increased smoothly when heated up to 300 °C. The compressive and flexural strength diminished after a slight strain gained when heated up to 100 °C. This work paves the way for future investigations focusing on the development of high-temperature resistance ECC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.