Background
Several studies highlight the effects of artificial intelligence (AI) systems on healthcare delivery. AI-based tools may improve prognosis, diagnostics, and care planning. It is believed that AI will be an integral part of healthcare services in the near future and will be incorporated into several aspects of clinical care. Thus, many technology companies and governmental projects have invested in producing AI-based clinical tools and medical applications. Patients can be one of the most important beneficiaries and users of AI-based applications whose perceptions may affect the widespread use of AI-based tools. Patients should be ensured that they will not be harmed by AI-based devices, and instead, they will be benefited by using AI technology for healthcare purposes. Although AI can enhance healthcare outcomes, possible dimensions of concerns and risks should be addressed before its integration with routine clinical care.
Methods
We develop a model mainly based on value perceptions due to the specificity of the healthcare field. This study aims at examining the perceived benefits and risks of AI medical devices with clinical decision support (CDS) features from consumers’ perspectives. We use an online survey to collect data from 307 individuals in the United States.
Results
The proposed model identifies the sources of motivation and pressure for patients in the development of AI-based devices. The results show that technological, ethical (trust factors), and regulatory concerns significantly contribute to the perceived risks of using AI applications in healthcare. Of the three categories, technological concerns (i.e., performance and communication feature) are found to be the most significant predictors of risk beliefs.
Conclusions
This study sheds more light on factors affecting perceived risks and proposes some recommendations on how to practically reduce these concerns. The findings of this study provide implications for research and practice in the area of AI-based CDS. Regulatory agencies, in cooperation with healthcare institutions, should establish normative standard and evaluation guidelines for the implementation and use of AI in healthcare. Regular audits and ongoing monitoring and reporting systems can be used to continuously evaluate the safety, quality, transparency, and ethical factors of AI-based services.
Background
Nowadays, a number of mechanisms and tools are being used by health care organizations and physicians to electronically exchange the personal health information of patients. The main objectives of different methods of health information exchange (HIE) are to reduce health care costs, minimize medical errors, and improve the coordination of interorganizational information exchange across health care entities. The main challenges associated with the common HIE systems are privacy concerns, security risks, low visibility of system transparency, and lack of patient control. Blockchain technology is likely to disrupt the current information exchange models utilized in the health care industry.
Objective
Little is known about patients’ perceptions and attitudes toward the implementation of blockchain-enabled HIE networks, and it is still not clear if patients (as one of the main HIE stakeholders) are likely to opt in to the applications of this technology in HIE initiatives. Thus, this study aimed at exploring the core value of blockchain technology in the health care industry from health care consumers’ views.
Methods
To recognize the potential applications of blockchain technology in health care practices, we designed 16 information exchange scenarios for controlled Web-based experiments. Overall, 2013 respondents participated in 16 Web-based experiments. Each experiment described an information exchange condition characterized by 4 exchange mechanisms (ie, direct, lookup, patient-centered, and blockchain), 2 types of health information (ie, sensitive vs nonsensitive), and 2 types of privacy policy (weak vs strong).
Results
The findings show that there are significant differences in patients’ perceptions of various exchange mechanisms with regard to patient privacy concern, trust in competency and integrity, opt-in intention, and willingness to share information. Interestingly, participants hold a favorable attitude toward the implementation of blockchain-based exchange mechanisms for privacy protection, coordination, and information exchange purposes. This study proposed the potentials and limitations of a blockchain-based attempt in the HIE context.
Conclusions
The results of this research should be of interest to both academics and practitioners. The findings propose potential limitations of a blockchain-based HIE that should be addressed by health care organizations to exchange personal health information in a secure and private manner. This study can contribute to the research in the blockchain area and enrich the literature on the use of blockchain in HIE efforts. Practitioners can also identify how to leverage the benefit of blockchain to promote HIE initiatives nationwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.