Recent experiments have observed bulk superconductivity in doped topological insulators. Here we ask whether vortex Majorana zero modes, previously predicted to occur when s-wave superconductivity is induced on the surface of topological insulators, survive in these doped systems with metallic normal states. Assuming inversion symmetry, we find that they do but only below a critical doping. The critical doping is tied to a topological phase transition of the vortex line, at which it supports gapless excitations along its length. The critical point depends only on the vortex orientation and a suitably defined SU(2) Berry phase of the normal state Fermi surface. By calculating this phase for available band structures we determine that superconducting p-doped Bi(2)Te(3), among others, supports vortex end Majorana modes. Surprisingly, superconductors derived from topologically trivial band structures can support Majorana modes too.
Superconductivity (SC) in so-called "unconventional superconductors" is nearly always found in the vicinity of another ordered state, such as antiferromagnetism, charge density wave (CDW), or stripe order. This suggests a fundamental connection between SC and fluctuations in some other order parameter. To better understand this connection, we used high-pressure x-ray scattering to directly study the CDW order in the layered dichalcogenide TiSe 2 , which was previously shown to exhibit SC when the CDW is suppressed by pressure [1] or intercalation of Cu atoms [2]. We succeeded in suppressing the CDW fully to zero temperature, establishing for the first time the existence of a quantum critical point (QCP) at P c = 5.1 ± 0.2 GPa, which is more than 1 GPa beyond the end of the SC region. Unexpectedly, at P = 3 GPa we observed a reentrant, weakly first order, incommensurate phase, indicating the presence of a Lifshitz tricritical point somewhere above the superconducting dome. Our study suggests that SC in TiSe 2 may not be connected to the QCP itself, but to the formation of CDW domain walls. *The term "unconventional superconductor" once referred to materials whose phenomenology does not conform to the Bardeen-Cooper-Schrieffer (BCS) paradigm for superconductivity. It is now evident that, by this definition, the vast majority of known superconductors are unconventional, notable examples being the copper-oxide, iron-arsenide, and iron-selenide high temperature superconductors, heavy Fermion materials such as CeIn 3 and CeCoIn 5 , ruthenium oxides, organic superconductors such as ϰ-(BEDT-TTF)2X, filled skutterudites, etc.Despite their diversity in structure and phenomenology, the phase diagrams of these materials all exhibit the common trait that superconductivity (SC) resides near the boundary of an ordered phase with broken translational or spin rotation symmetry. For example, SC resides near antiferromagnetism in CeIn 3 [3], near a spin density wave in iron arsenides [4], orbital order in ruthenates [5], and stripe and nematic order in the copper-oxides [6]. The pervasiveness of this "universal phase diagram" suggests that there exists a unifying framework -more general than BCS -in which superconductivity can be understood as coexisting with some ordered phase, and potentially emerging from its fluctuations.A classic example is the transition metal dichalcogenide family, MX 2 , where M=Nb, Ti, Ta, and X=Se, S, which exhibit a rich competition between superconductivity and Peierls-like charge density wave (CDW) order [7]. A recent, prominent case is 1T-TiSe 2 , which under ambient pressure exhibits CDW order below a transition temperature T CDW = 202 K [8]. This CDW phase can be suppressed either with intercalation of Cu atoms [2,9], or through the application of hydrostatic pressure [1,10], causing SC to emerge. These studies suggest that the emergence of SC coincides with a quantum critical point (QCP) at which T CDW goes to zero, suggesting that TiSe 2 exemplifies the universal phenomenon of superconductivity em...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.