We solve a multi-period portfolio optimization problem using D-Wave Systems'
quantum annealer. We derive a formulation of the problem, discuss several
possible integer encoding schemes, and present numerical examples that show
high success rates. The formulation incorporates transaction costs (including
permanent and temporary market impact), and, significantly, the solution does
not require the inversion of a covariance matrix. The discrete multi-period
portfolio optimization problem we solve is significantly harder than the
continuous variable problem. We present insight into how results may be
improved using suitable software enhancements, and why current quantum
annealing technology limits the size of problem that can be successfully solved
today. The formulation presented is specifically designed to be scalable, with
the expectation that as quantum annealing technology improves, larger problems
will be solvable using the same techniques.Comment: 7 pages; expanded and update
Abstract-We solve a multi-period portfolio optimization problem using D-Wave Systems' quantum annealer. We derive a formulation of the problem, discuss several possible integer encoding schemes, and present numerical examples that show high success rates. The formulation incorporates transaction costs (including permanent and temporary market impact), and, significantly, the solution does not require the inversion of a covariance matrix. The discrete multiperiod portfolio optimization problem we solve is significantly harder than the continuous variable problem. We present insight into how results may be improved using suitable software enhancements and why current quantum annealing technology limits the size of problem that can be successfully solved today. The formulation presented is specifically designed to be scalable, with the expectation that as quantum annealing technology improves, larger problems will be solvable using the same techniques.
The spin-3/2 Affleck-Kennedy-Lieb-Tasaki (AKLT) valence-bond state on the
hexagonal lattice was shown to be a universal resource state for
measurement-based quantum computation (MBQC). Can AKLT states of higher spin
magnitude support universal MBQC? We demonstrate that several hybrid 2D AKLT
states involving mixture of spin-2 and other lower-spin entities, such as
spin-3/2 and spin-1, are also universal for MBQC. This significantly expands
universal resource states in the AKLT family. Even though frustration may be a
hinderance to quantum computational universality, lattices can be modified to
yield AKLT states that are universal. The family of AKLT states thus provides a
versatile playground for quantum computation.Comment: 8 pages, 5 figures, title changed in published versio
We discuss the interdependence of resource state, measurement setting and temporal order in measurement-based quantum computation. The possible temporal orders of measurement events are constrained by the principle that the randomness inherent in quantum measurement should not affect the outcome of the computation. We provide a classification for all temporal relations among measurement events compatible with a given initial stabilizer state and measurement setting, in terms of a matroid. Conversely, we show that classical processing relations necessary for turning the local measurement outcomes into computational output determine the resource state and measurement setting up to local equivalence. Further, we find a symmetry transformation related to local complementation that leaves the temporal relations invariant
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.