The t(7;21)(p22;q22) resulting in RUNX1‐USP42 fusion, is a rare but recurrent cytogenetic abnormality associated with acute myeloid leukemia (AML) and myelodysplastic syndromes. The prognostic significance of this translocation has not been well established due to the limited number of patients. Herein, we report three pediatric AML patients with t(7;21)(p22;q22). All three patients presented with pancytopenia or leukopenia at diagnosis, accompanied by abnormal immunophenotypic expression of CD7 and CD56 on leukemic blasts. One patient had t(7;21)(p22;q22) as the sole abnormality, whereas the other two patients had additional numerical and structural aberrations including loss of 5q material. Fluorescence in situ hybridization analysis on interphase cells or sequential examination of metaphases showed the RUNX1 rearrangement and confirmed translocation 7;21. Genomic SNP microarray analysis, performed on DNA extracted from the bone marrow from the patient with isolated t(7;21)(p22;q22), showed a 32.2 Mb copy neutral loss of heterozygosity (cnLOH) within the short arm of chromosome 11. After 2‐4 cycles of chemotherapy, all three patients underwent allogeneic hematopoietic stem cell transplantation (HSCT). One patient died due to complications related to viral reactivation and graft‐versus‐host disease. The other two patients achieved complete remission after HSCT. Our data displayed the accompanying cytogenetic abnormalities including del(5q) and cnLOH of 11p, the frequent pathological features shared with other reported cases, and clinical outcome in pediatric AML patients with t(7;21)(p22;q22). The heterogeneity in AML harboring similar cytogenetic alterations may be attributed to additional uncovered genetic lesions.
The role of autosomal recessive (AR) variants in clinically heterogeneous conditions such as intellectual disability and developmental delay (ID/DD) has been difficult to uncover. Implication of causative pathogenic AR variants often requires investigation within large and consanguineous families, and/or identifying rare biallelic variants in affected individuals. Furthermore, detection of homozygous gene-level copy number variants during first-line genomic microarray testing in the pediatric population is a rare finding. We describe a 6.7-year-old male patient with ID/DD and a novel homozygous deletion involving the FRY gene identified by genomic SNP microarray. This deletion was observed within a large region of homozygosity on the long arm of chromosome 13 and in a background of increased low-level (2.6%) autosomal homozygosity, consistent with a reported common ancestry in the family. FRY encodes a protein that regulates cell cytoskeletal dynamics, functions in chromosomal alignment in mitosis in vitro, and has been shown to function in the nervous system in vivo. Homozygous mutation of FRY has been previously reported in 2 consanguineous families from studies of autosomal recessive ID in Middle Eastern and Northern African populations. This report provides additional supportive evidence that deleterious biallelic mutation of FRY is associated with ID/DD and illustrates the utility of genomic SNP microarray detection of low-level homozygosity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.