With the demand for clean energy increasing, novel research is presented in this paper on providing sustainable, clean energy for a university campus. The Internet of Things (IoT) is now a leading factor in saving energy. With added deep learning for action recognition, IoT sensors implemented in real-time appliances monitor and control the extra usage of energy in buildings. This gives an extra edge on digitizing energy usage and, ultimately, reducing the power load in the electric grid. Here, we present a novel proposal through context-aware architecture for energy saving in classrooms, combining Internet of Things (IoT) sensors and video action recognition. Using this method, we can save a significant amount of energy usage in buildings.
Ergonomics is important for smooth and sustainable industrial operation. In the manufacturing industry, due to poor workstation design, workers frequently and repeatedly experience uncomfortable postures and actions (reaching above their shoulders, bending at awkward angles, bending backwards, flexing their elbows/wrists, etc.). Incorrect working postures often lead to specialized injuries, which reduce productivity and increase development costs. Therefore, examining workers’ ergonomic postures becomes the basis for recognizing, correcting, and preventing bad postures in the workplace. This paper proposes a new framework to carry out risk analysis of workers’ ergonomic postures through 3D human pose estimation from video/image sequences of their actions. The top-down network calculates human body joints when bending, and those angles are compared with the ground truth body bending data collected manually by expert observation. Here, we introduce the body angle reliability decision (BARD) method to calculate the most reliable body-bending angles to ensure safe working angles for workers that conform to ergonomic requirements in the manufacturing industry. We found a significant result with high accuracy in the score for ergonomics we used for this experiment. For good postures with high reliability, we have OWAS score 94%, REBA score 93%, and RULA score 93% accuracy. Similarly, for occluded postures we have OWAS score 83%, REBA score 82%, and RULA score 82%, compared with expert’s occluded scores. For future study, our research can be a reference for ergonomics score analysis with 3D pose estimation of workers’ postures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.