Plastic production began in the early 1900s and it has transformed our way of life. Despite the many advantages of plastics, a massive amount of plastic waste is generated each year, threatening the environment and human health. Because of their pervasiveness and potential for health consequences, small plastic residues produced by the breakdown of larger particles have recently received considerable attention. Plastic particles at the nanometer scale (nanoplastics) are more easily absorbed, ingested, or inhaled and translocated to other tissues and organs than larger particles. Nanoplastics can also be transferred through the food web and between generations, have an influence on cellular function and physiology, and increase infections and disease susceptibility. This review will focus on current research on the toxicity of nanoplastics to aquatic species, taking into account their interactive effects with complex environmental mixtures and multiple stressors. It intends to summarize the cellular and molecular effects of nanoplastics on aquatic species; discuss the carrier effect of nanoplastics in the presence of single or complex environmental pollutants, pathogens, and weathering/aging processes; and include environmental stressors, such as temperature, salinity, pH, organic matter, and food availability, as factors influencing nanoplastic toxicity. Microplastics studies were also included in the discussion when the data with NPs were limited. Finally, this review will address knowledge gaps and critical questions in plastics’ ecotoxicity to contribute to future research in the field.
The global accumulation of plastic waste has reached crisis levels. The diverse and multilayered impacts of plastic on biological health prompts an evaluation of these effects from a One Health perspective, through which the complexity of these processes can be integrated and more clearly understood. Plastic particles ranging from nanometers to meters in size are found throughout every ecosystem on Earth, from the deepest marine trenches to the highest mountains. Plastic waste affects all layers of biological organization, from the molecular and cellular to the organismal, community, and ecosystem-levels. These effects are not only mediated by the physical properties of plastics, but also by the chemical properties of the plastic polymers, the thousands of additives combined with plastics during manufacturing, and the sorbed chemicals and microbes that are transported by the plastic waste. Using a One Health framework we provide an overview of the following themes: 1) ways in which plastic impacts global health across levels of biological organization, 2) how the effects of plastic interact between layers of biology, and 3) what knowledge gaps exist in understanding the effects of plastic within and between biological scales. We also propose potential solutions to address this growing crisis, with an emphasis on One Health perspectives that consider the oneness of animals, humans, and the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.