In this paper, we present unique results of equatorial and low‐latitude ionosphere response to one of the major geomagnetic storms of the current solar cycle that occurred during 17–18 March 2015, where Dst reached its minimum of −228 nT. Here we utilized data from magnetometers, chain of ionosondes located at Tirunelveli (8.73°N, 77.70°E; geometry: 0.32°N), Hyderabad (17.36°N, 78.47°E; geometry 8.76°N), and Allahabad (25.45°N, 81.85°E; geometry 16.5°N) along with multistation GPS receivers over Indian sector. The observations showed a remarkable increase of h′F to as high as ~560 km over Tirunelveli (magnetic equator) with vertical drift of ~70 m/s at 13:30 UT due to direct penetration of storm time eastward electric fields which exactly coincided with the local time of pre‐reversal enhancement (PRE) and caused intense equatorial spread F irregularities in ionosondes and scintillations in GPS receivers at wide latitudes. Plasma irregularities are so intense that their signatures are seen in Allahabad/Lucknow. Storm time thermospheric meridional winds as estimated using two ionosondes suggest the equatorward surge of gravity waves with period of ~2 h. Suppression of anomaly crest on the subsequent day of the storm suggests the complex role of disturbance dynamo electric fields and disturbance wind effects. Our results also show an interesting feature of traveling ionospheric disturbances possibly associated with disturbance meridional wind surge during recovery phase. In addition, noteworthy observations are nighttime westward zonal drifts and PRE‐related total electron content enhancements at anomaly crests during main phase and counter electrojet signatures during recovery phase.
We present a critical analysis of the observations and interpretation of VLF subionospheric measurements related to the main Nepal Gorkha earthquake which occurred on 25 April 2015 (Mw7.8) and its major aftershock on 12 May 2015 (Mw7.3). The VLF narrowband signal used is from North West Cape (NWC) (19.8 kHz) VLF transmitter located in Australia and recorded at Allahabad (latitude 25.41°N, longitude 81.93°E). Allahabad is located very close (~360 km) to these earthquake epicenters. Two widely used analysis, viz., (1) terminator time and (2) nighttime fluctuation techniques, are applied to extract seismic related effects in the NWC narrowband VLF data. The terminator time analysis yields statistically significant shifts of ~45 and ~26 min, respectively, in evening terminator time in the NWC VLF amplitude signal, 1 day before both the earthquakes. The nighttime fluctuation method shows a consistent, statistically significant, increase in three parameters 1 day before the earthquake. The observed terminator time and nighttime fluctuation shifts were associated with these earthquakes only after scrutinizing possible contributions from other potential sources such as solar activity; other earthquakes on the signal path; and meteorological disturbances such as lightning activity, wind speed, and temperature along the transmitter‐receiver great circle path. The VLF subionospheric signal analysis results unambiguously point toward the presence of seismically excited atmospheric gravity waves during these major earthquakes and their important role in providing the coupling between the seismic source region and overlying ionosphere.
D region effects of the 17–19 March 2015, a St Patrick's Day super geomagnetic storm (Dst = −223 nT), using a navigational transmitter very low frequency (VLF) signal (NWC, 19.8 kHz) recorded at a low‐latitude Indian station, Allahabad (geomag. lat., 16.45°N), have been analyzed and compared with similar strength of the 22–25 June 2015 storm (Dst = −204 nT). During the March storm, NWC signal amplitude decreased on 17 March (main phase of the storm) and recovered on 27 March, which is 1 day after the recovery of the storm, whereas for the June storm, VLF amplitude decreased for 2 days only during its recovery phase. The decrease in the amplitude was pronounced during evening terminator for both the storms. The modeling of VLF signal anomaly on 17 March and on 25 June using Long‐Wave Propagation Capability code shows an increase in the D region reference height (h′) by ~2.6 km and ~2.5 km, for March and June storms, respectively. The D region electron density (Ne) determined using storm time h′ and sharpness factor β shows a decrease in the Ne during the main phase followed by a slow recovery during the recovery phase of the March storm, whereas June 2015 storm showed a decrease in the Ne only on 25 and 26 June. Morlet Wavelet analysis of the amplitude for both the storms shows a presence of strong wave‐like signatures, suggesting propagation of atmospheric gravity waves/traveling ionosphere disturbances to the low latitude D region due to the Joule heating at high latitudes.
Generation of equatorial spread F (ESF) irregularities resulting from magnetic disturbance is known for past few decades. However, better prediction models for this phenomenon are still lacking. Magnetic storms also affects the F region plasma drifts. In this work we examined variability in (i) occurrence of such freshly generated ESF and (ii) low‐latitude F region zonal plasma drifts over Indian longitude. For this purpose simultaneous observations of amplitude scintillations on 251 MHz signal, recorded by a network of spaced receivers located at low‐latitude stations, are utilized. Observational stations are situated such that it longitudinally (latitudinally) covers an area of 5.6° (13°). Here effect of disturbance dynamo (DD) electric field at low‐latitude F region and its variability are studied for three magnetic storms occurring in 2011. These magnetic storms are having nearly similar type characteristics except their start time. We find that as time difference (i.e., ΔT) between local sunset and start of magnetic activity decreases, the DD effects seen at low‐latitude F region zonal irregularity drift around midnight becomes stronger. For a given magnetic storm the DD effect on F region zonal irregularity drifts is found to be only marginally stronger at dip equator in comparison to off‐equatorial stations. Although effect of DD on F region zonal irregularity drifts are felt simultaneously, generation of fresh ESF is variable within a smaller longitudinal belt of 5.6°. It is attributed to the presence of LSWS at the bottomside of F region, as initiation of ESF is highly likely (unlikely) in the vicinity of crest (trough) of such LSWS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.