3-[4-(Azidocarbonyl)]phenylsydnone (2) obtained from 3-(4-hydrazinocarbonyl) phenylsydnone (1) on Curtius rearrangement with alcohols, water and amines afforded the corresponding carbamates (3a-h), 4,4′-(sydnone-3-yl) diphenyl urea (4) and 4-(heterocyclyl)phenyl ureas (5a-l). Compounds (5a-l) on one-pot ring conversion yielded the 1,3,4-oxadiazolin-2-one derivatives (6a-l), which on reaction with N 2 H 4 gave the 4-amino-1,2,4-triazolin-3-ones (7a-l). All these compounds exhibited moderate antimicrobial activity against the few microbes tested. The carbamates have been found to be more toxic against fourth instar larvae of Aedes aegypti, in particular, the n-butyl derivative (3e).
OX513A Aedes aegypti is a genetically engineered strain carrying a self-limiting gene. Studies in several countries have shown the effectiveness of the strain at reducing pest Aedes aegypti populations. As a component of biosafety assessments relevant to Indian environments, OX513A and two Indian wild-type Ae. aegypti strains (from Aurangabad and Delhi) were tested for susceptibility to a range of commonly used insecticides in India, such as dichlorodiphenyltrichloroethane (DDT), malathion, deltamethrin, and permethrin using World Health Organization (WHO) testing kits and following WHO standard test procedures. Knockdown times (KDT) for all compounds were determined separately for male and female adults of the three mosquito strains. Results indicated that adults of OX513A, Aurangabad, and Delhi strains were resistant to DDT, yielding mortality rates of 90.9, 87.4, and 44.4% and 70.1, 3.0, and 6.0% for male and female adults, respectively. In contrast, adults of all three strains were found to be susceptible to malathion, deltamethrin, and permethrin, exhibiting mortalities between 98 and 100%. The magnitudes of susceptibility, based on the KDT 50 values, were greater in the OX513A strain, as compared to wild-type strains of Ae. aegypti for all insecticides tested. The results confirm that, aside from historical resistance to DDT, OX513A has retained full sensitivity to these commonly used compounds and exhibits responses akin to those of susceptible Indian wild-type strains.
Establishment of novel mosquito control technologies such as the use of genetically engineered insects typically involves phased testing to generate robust data-sets that support its safe and effective use as a vector control tool. In this study, we demonstrate the ability of the transgenic self-limiting OX513A Aedes aegypti strain to suppress a wild type Ae. aegypti population in an outdoor containment facility in India. OX513A is a genetically engineered Ae. aegypti strain with a repressible dominant self-limiting gene. When male adult OX513A mate with wild female adults, a single copy of the self-limiting gene is inherited by all the progeny, leading to death of >95% of progeny during larval/pupal development. A wild-type population of Ae. aegypti was established and stabilized during a 14 week period in five paired field cage units, each consisting of control and treatment cages, followed by weekly releases of OX513A male adults to suppress the target population. The successive introductions of OX513A male adults led to a consistent decline in wild type numbers eventually resulting in the elimination of Ae. aegypti from all treated cages within 10 to 15 weeks of release. This study demonstrates that Ae. aegypti elimination may be a realistic and achievable target in relatively isolated environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.