The term LASER is an acronym for ‘Light Amplification by the Stimulated Emission of Radiation’. As its first application in dentistry by Miaman, in 1960, the laser has seen various hard and soft tissue applications. In the last two decades, there has been an explosion of research studies in laser application. In hard tissue application, the laser is used for caries prevention, bleaching, restorative removal and curing, cavity preparation, dentinal hypersensitivity, growth modulation and for diagnostic purposes, whereas soft tissue application includes wound healing, removal of hyperplastic tissue to uncovering of impacted or partially erupted tooth, photodynamic therapy for malignancies, photostimulation of herpetic lesion. Use of the laser proved to be an effective tool to increase efficiency, specificity, ease, and cost and comfort of the dental treatment.
Class III malocclusion represents a growth-related dentofacial deformity with mandibular prognathism in relation to the maxilla and/or cranial base. Its prevalence varies greatly among and within different races, ethnic groups, and geographic regions studied. Class III malocclusion has a multifactorial etiology, which is the expression of a moderate distortion of normal development as a result of interaction between innate factors or genetic hereditary with environmental factors. Various skeletal topographies of underlying Class III malocclusion are due to discrepancy in the maxillary and mandibular growth along with vertical and/or transverse problems apart from sagittal malformations. The spectrum of complications for Class III malocclusion ranges in gravity from dentoalveolar problems with functional anterior shift of the mandible to true skeletal problems with serious maxillomandibular discrepancies, which makes its diagnosis highly challenging in growing children. Concern regarding early treatment and the need for interceptive care in the case of Class III malocclusion has always been a dilemma, knowing that not all problems will be solved in these cases until maxillomandibular growth is further completed, and the long-term outcome of various treatment approaches may depend on the growth tendency of an individual. Interceptive treatment of Class III malocclusions should be undertaken if it prevents damage to the oral tissues and/or significantly reduces the amount or severity of future orthodontic and surgical interventions. This paper presents an overview of developing Class III malocclusion, with the emphasis on challenges and their solutions based on the best current available evidence.
We assessed the generalizability of deep learning models and how to improve it. Our exemplary use-case was the detection of apical lesions on panoramic radiographs. We employed two datasets of panoramic radiographs from two centers, one in Germany (Charité, Berlin, n = 650) and one in India (KGMU, Lucknow, n = 650): First, U-Net type models were trained on images from Charité (n = 500) and assessed on test sets from Charité and KGMU (each n = 150). Second, the relevance of image characteristics was explored using pixel-value transformations, aligning the image characteristics in the datasets. Third, cross-center training effects on generalizability were evaluated by stepwise replacing Charite with KGMU images. Last, we assessed the impact of the dental status (presence of root-canal fillings or restorations). Models trained only on Charité images showed a (mean ± SD) F1-score of 54.1 ± 0.8% on Charité and 32.7 ± 0.8% on KGMU data (p < 0.001/t-test). Alignment of image data characteristics between the centers did not improve generalizability. However, by gradually increasing the fraction of KGMU images in the training set (from 0 to 100%) the F1-score on KGMU images improved (46.1 ± 0.9%) at a moderate decrease on Charité images (50.9 ± 0.9%, p < 0.01). Model performance was good on KGMU images showing root-canal fillings and/or restorations, but much lower on KGMU images without root-canal fillings and/or restorations. Our deep learning models were not generalizable across centers. Cross-center training improved generalizability. Noteworthy, the dental status, but not image characteristics were relevant. Understanding the reasons behind limits in generalizability helps to mitigate generalizability problems.
Objective: The aim of the study was to analyze the caries protective factors, salivary parameters, and microbial counts in high caries risk children with cleft lip and/or palate (CL/P). Design: This was a cross-sectional study. Setting: This study was conducted in a tertiary health care teaching hospital in New Delhi, India. Participants: The study was conducted in 40 children, 20 with CL/P and 20 without aged between 5 and 12 years. Methods: Children with 2 or more caries lesions in both groups were included in this study. Demographic details, dental caries of affected teeth (World Health Organization criteria for Decayed Missing Filled Teeth [WHO-DMFT] and International Caries Detection and Assessment System [ICDAS II]), caries protective factors, salivary parameters, and microbial counts were recorded by one calibrated investigator. Main Outcome Measures: Caries protective factors, salivary parameters, and microbial profile. Results: The Chi-square (χ2) test and Pearson correlation were used for statistical analysis. All the children participating in the study brushed their teeth only once in a day and consumed sweets more than twice a day. None of the children had ever received fluoride varnish. Resting saliva had a low buffering capacity in 80% of children with CL/P and 95% of children without CL/P. Microbial assessment of stimulated saliva showed that with the increases in the numbers (DMFT scores ≥4) and severity (ICDAS codes from 1-2 to 5-6) of caries lesions, both Streptococci and Lactobacilli counts were ≥105 colony-forming units/mL of saliva in the both groups. Conclusions: Children with CL/P showed limited access to caries protective measures and low buffering capacity in resting saliva, along with elevated levels of salivary Streptococci and Lactobacilli in stimulated saliva.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.