Ground penetrating radar (GPR) is used to detect the underground buried objects for civil as well as defence applications under varying conditions of soil moisture content. The capability of detection depends upon soil moisture, target characteristics and subsurface characteristics, which are mainly responsible for contaminating the GPR images with clutter. Researchers earlier have used averaging, mean, median, Eigen values, etc. for subtracting the background from GPR images. To analyse the background subtraction or clutter reduction problems, in this paper, we have experimentally reviewed background subtraction techniques with or without target conditions to enhance the target detection under variable soil moisture content. Indigenously developed GPR has been used to collect the data for different soil conditions and several background subtraction signal processing techniques were critically reviewed like, mean, median, singular value decomposition (SVD), principal component analysis (PCA), independent component analysis (ICA) and training methods. The signal to clutter ratio (SCR) measurement has been used for performance evaluation of each technique. The relative merits and demerits of each technique has also been analysed. The background subtraction techniques have been appliedto experimental GPR data and it is observed that in comparison of mean, SVD, median, ICA, PCA, the training method shows the highest SCR with buried target. Finally, this review helps to select the comparatively better background subtraction technique to enhance the detection capability in GPR.
Artificial Bee Co lony (ABC) is one of the latest swarm algorith m based on the intelligent foraging behavior of honey bees introduced in the year 2005 by Karaboga since then it has been used for optimizat ion of various solutions. And it is recently introduced for processing and analysis of images such as segmentation, object recognition and image retrieval. Fusing images fro m a vast collection of different images has become one of the interesting challenges and has drawn the attention of researchers towards the development of fusion techniques. In this paper, we have p roposed the usage of ABC for optimal fusion of mult i-temporal images and studied the effect of variat ion in the source area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.