The face of hepatitis C virus (HCV) therapy is changing dramatically. Direct-acting antiviral agents (DAAs) specifically targeting HCV proteins have been developed and entered clinical practice in 2011. However, despite high sustained viral response (SVR) rates of more than 90%, a fraction of patients do not eliminate the virus and in these cases treatment failure has been associated with the selection of drug resistance mutations (RAMs). RAMs may be prevalent prior to the start of treatment, or can be selected under therapy, and furthermore they can persist after cessation of treatment. Additionally, certain DAAs have been approved only for distinct HCV genotypes and may even have subtype specificity. Thus, sequence analysis before start of therapy is instrumental for managing DAA-based treatment strategies. We have created the interpretation system geno2pheno[HCV] (g2p[HCV]) to analyse HCV sequence data with respect to viral subtype and to predict drug resistance. Extensive reviewing and weighting of literature related to HCV drug resistance was performed to create a comprehensive list of drug resistance rules for inhibitors of the HCV protease in non-structural protein 3 (NS3-protease: Boceprevir, Paritaprevir, Simeprevir, Asunaprevir, Grazoprevir and Telaprevir), the NS5A replicase factor (Daclatasvir, Ledipasvir, Elbasvir and Ombitasvir), and the NS5B RNA-dependent RNA polymerase (Dasabuvir and Sofosbuvir). Upon submission of up to eight sequences, g2p[HCV] aligns the input sequences, identifies the genomic region(s), predicts the HCV geno- and subtypes, and generates for each DAA a drug resistance prediction report. g2p[HCV] offers easy-to-use and fast subtype and resistance analysis of HCV sequences, is continuously updated and freely accessible under http://hcv.geno2pheno.org/index.php. The system was partially validated with respect to the NS3-protease inhibitors Boceprevir, Telaprevir and Simeprevir by using data generated with recombinant, phenotypic cell culture assays obtained from patients’ virus variants.
For neuroblastoma, the most common extracranial tumour of childhood, identification of new biomarkers and potential therapeutic targets is mandatory to improve risk stratification and survival rates. MicroRNAs are deregulated in most cancers, including neuroblastoma. In this study, we analysed 430 miRNAs in 69 neuroblastomas by stem-loop RT-qPCR. Prediction of event-free survival (EFS) with support vector machines (SVM) and actual survival times with Cox regression-based models (CASPAR) were highly accurate and were independently validated. SVM-accuracy for prediction of EFS was 88.7% (95% CI: 88.5-88.8%). For CASPAR-based predictions, 5y-EFS probability was 0.19% (95% CI: 0-38%) in the CASPAR-predicted short survival group compared with 0.78% (95%CI: 64-93%) in the CASPAR-predicted long survival group. Both classifiers were validated on an independent test set yielding accuracies of 94.74% (SVM) and 5y-EFS probabilities as 0.25 (95% CI: 0.0-0.55) for short versus 1 6 0.0 for long survival (CASPAR), respectively. Amplification of the MYCN oncogene was highly correlated with deregulation of miRNA expression. In addition, 37 miRNAs correlated with TrkA expression, a marker of excellent outcome, and 6 miRNAs further analysed in vitro were regulated upon TrkA transfection, suggesting a functional relationship. Expression of the most significant TrkA-correlated miRNA, miR-542-5p, also discriminated between local and metastatic disease and was inversely correlated with MYCN amplification and event-free survival. We conclude that neuroblastoma patient outcome prediction using miRNA expression is feasible and effective. Studies testing miRNA-based predictors in comparison to and in combination with mRNA and aCGH information should be initiated. Specific miRNAs (e.g., miR-542-5p) might be important in neuroblastoma tumour biology, and qualify as potential therapeutic targets.Relapse or progression of advanced stage neuroblastoma (NB), the most common extracranial solid tumour of childhood, represents a major treatment challenge in paediatric oncology. Almost one third of all children with advanced stage NB is incurable, and NB accounts for approximately 15% of all childhood cancer deaths. Neuroblastoma is clinically heterogeneous. Tumours of patients with favourable disease may undergo spontaneous regression or differentiation even without therapy. In contrast, patients with unfavourable NB die despite intensive therapy. Favourable tumours are most often localised, stage 1 or 2 tumours, and unfavourable are most often stage 4, metastasised tumours. Stage 4 tumours are metastasised tumours in patients under 1 year of age, which often undergo spontaneous regression with no or minimal therapy. The tumour biology of unfavourable NB is characterised by MYCN amplification, low expression of the TrkA receptor tyrosine kinase and distinct chromosomal aberrations (reviewed in Refs. 1 and 2). Survival rates of patients with unfavourable NB can only be improved by a better understanding of the molecular pathogenesis of NB. This may...
Identifying resistance to antiretroviral drugs is crucial for ensuring the successful treatment of patients infected with viruses such as human immunodeficiency virus (HIV) or hepatitis C virus (HCV). In contrast to Sanger sequencing, next-generation sequencing (NGS) can detect resistance mutations in minority populations. Thus, genotypic resistance testing based on NGS data can offer novel, treatment-relevant insights. Since existing web services for analyzing resistance in NGS samples are subject to long processing times and follow strictly rules-based approaches, we developed geno2pheno[ngs-freq], a web service for rapidly identifying drug resistance in HIV-1 and HCV samples. By relying on frequency files that provide the read counts of nucleotides or codons along a viral genome, the time-intensive step of processing raw NGS data is eliminated. Once a frequency file has been uploaded, consensus sequences are generated for a set of user-defined prevalence cutoffs, such that the constructed sequences contain only those nucleotides whose codon prevalence exceeds a given cutoff. After locally aligning the sequences to a set of references, resistance is predicted using the well-established approaches of geno2pheno[resistance] and geno2pheno[hcv]. geno2pheno[ngs-freq] can assist clinical decision making by enabling users to explore resistance in viral populations with different abundances and is freely available at http://ngs.geno2pheno.org.
Phylogenetics has a crucial role in genomic epidemiology. Enabled by unparalleled volumes of genome sequence data generated to study and help contain the COVID-19 pandemic, phylogenetic analyses of SARS-CoV-2 genomes have shed light on the virus’s origins, spread, and the emergence and reproductive success of new variants. However, most phylogenetic approaches, including maximum likelihood and Bayesian methods, cannot scale to the size of the datasets from the current pandemic. We present ‘MAximum Parsimonious Likelihood Estimation’ (MAPLE), an approach for likelihood-based phylogenetic analysis of epidemiological genomic datasets at unprecedented scales. MAPLE infers SARS-CoV-2 phylogenies more accurately than existing maximum likelihood approaches while running up to thousands of times faster, and requiring at least 100 times less memory on large datasets. This extends the reach of genomic epidemiology, allowing the continued use of accurate phylogenetic, phylogeographic and phylodynamic analyses on datasets of millions of genomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.