Frantic efforts have been made up to this date to derive consensus for estimating renal function in critically ill patients, only to open the Pandora's box. This article tries to explore the various methods available to date, the newer concepts, and the uncared issues that may still prove to be useful in estimating renal function in intensive care unit patients. The concept of augmented renal clearance, which is frequently encountered in critically ill patients, should always be taken into account, as correct therapeutic dosage of drugs sounds vital which in turn depends on correctly calculated glomerular filtration rate. Serum creatinine and creatinine-based formulae have their own demerits that are well known and established. While Cockcroft-Gault and 4-variable modification of diet in renal diseases formulae are highly inadequate in the intensive care setup for estimating glomerular filtration rate, employing isotopic methods is impractical and cumbersome. The 6-variable modification of diet in renal diseases formula fairs better as it takes into account the serum albumin and blood urea nitrogen, too. Jelliffe's and modified Jelliffe's equations take into account the rate of creatinine production and volume of distribution which in turn fluctuates heavily in a critically ill patient. Twenty-four-hour and timed creatinine clearances offer values close to reality although not accurate and cannot provide immediate results. Cystatin C is a novel agent that offers a sure promise as it is least influenced by factors that affect serum creatinine to a major extent. Aminoglycoside clearance, although still in the dark area, may prove a simple yet precise way of estimating glomerular filtration rate in those patients in whom these drugs are therapeutically employed. Optic ratiometric method has emerged as the most sophisticated one in glomerular filtration rate estimation in critically ill patients.
Background:Acute kidney injury (AKI) is common after cardiac surgery, the incidence varying between 7.7% and 28.1%. It significantly increases morbidity and mortality. Creatinine considerably delays the diagnosis with its own attended demerits. Novel urinary biomarkers are emerging which help in rapid diagnosis thus reducing the morbidity and mortality. Biomarkers of our study were neutrophil gelatinase-associated lipocalin (NGAL) and Interleukin-18 (IL-18).Objectives:To find out the incidence of AKI in post-cardiac surgery patients in our hospital, the ability of the two biomarkers in early diagnosis in predicting the severity of AKI based on RIFLE’s criteria and their ability to discriminate pre-renal from intrinsic AKI.Patients and Methods:One-hundred patients who underwent cardiac surgery were selected. Midstream urine samples were collected at 3 time intervals (baseline before surgery, 24 hours and 7 days after surgery). Biomarkers were measured by ELISA using BIORAD processors. Fractional excretion of sodium and urea were used to discriminate pre-renal from intrinsic AKI.Results:Out of 100 patients, 31 had AKI, 11 being pre-renal and 20 intrinsic AKI. Four patients required renal replacement therapy (12.9% among AKI cases and 4% in the overall study cohort). Four among 31 expired in intensive care unit. Identifiable risk factors for AKI included insulin requiring diabetes mellitus, chronic obstructive pulmonary disease, increased cardio-pulmonary bypass time, combined valvular surgery and coronary artery bypass grafting, employment of intra-aortic balloon counter pulsation, left main coronary artery occlusion and an ejection fraction of < 40%. NGAL was extremely sensitive (area under curve-0.96) in detecting intrinsic AKI at 24 hours followed by IL-18 ratio with an area under curve of 0.89. Creatinine at 24 hours was able to detect only 31.6% of intrinsic AKI. None of the pre-renal cases showed rise in the urinary biomarker levels. Patients with higher stages of AKI had higher levels of both biomarkers than those at lower stages.Conclusions:NGAL and IL-18 obviated the disadvantages of creatinine. They were efficient in early detection of AKI, in differentiating pre-renal from intrinsic AKI and in predicting the severity of AKI reliably in post-cardiac surgery patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.