Most massive stars are members of a binary or a higher-order stellar system, where the presence of a binary companion can decisively alter their evolution via binary interactions. Interacting binaries are also important astrophysical laboratories for the study of compact objects. Binary population synthesis studies have been used extensively over the last two decades to interpret observations of compact-object binaries and to decipher the physical processes that lead to their formation. Here, we present POSYDON, a novel, publicly available, binary population synthesis code that incorporates full stellar structure and binary-evolution modeling, using the MESA code, throughout the whole evolution of the binaries. The use of POSYDON enables the self-consistent treatment of physical processes in stellar and binary evolution, including: realistic mass-transfer calculations and assessment of stability, internal angular-momentum transport and tides, stellar core sizes, mass-transfer rates, and orbital periods. This paper describes the detailed methodology and implementation of POSYDON, including the assumed physics of stellar and binary evolution, the extensive grids of detailed single- and binary-star models, the postprocessing, classification, and interpolation methods we developed for use with the grids, and the treatment of evolutionary phases that are not based on precalculated grids. The first version of POSYDON targets binaries with massive primary stars (potential progenitors of neutron stars or black holes) at solar metallicity.
Most massive stars are members of a binary or a higher-order stellar systems, where the presence of a binary companion can decisively alter their evolution via binary interactions. Interacting binaries are also important astrophysical laboratories for the study of compact objects. Binary population synthesis studies have been used extensively over the last two decades to interpret observations of compact-object binaries and to decipher the physical processes that lead to their formation. Here, we present POSYDON, a novel , binary population synthesis code that incorporates full stellar-structure and binary-evolution modeling, using the MESA code, throughout the whole evolution of the binaries. The use of POSYDON enables the self-consistent treatment of physical processes in stellar and binary evolution, including: realistic mass-transfer calculations and assessment of stability, internal angularmomentum transport and tides, stellar core sizes, mass-transfer rates and orbital periods. This paper describes the detailed methodology and implementation of POSYDON, including the assumed physics of stellar-and binary-evolution, the extensive grids of detailed single-and binary-star models, the post-processing, classification and interpolation methods we developed for use with the grids, and the treatment of evolutionary phases that are not based on pre-calculated grids. The first version of POSYDON targets binaries with massive primary stars (potential progenitors of neutron stars or black holes) at solar metallicity.
In this paper, we present the CET-LATS (Compressing Evolution of TINs from Location Aware Time Series) system, which enables testing the impacts of various compression approaches on evolving Triangulated Irregular Networks (TINs). Specifically, we consider the settings in which values measured in distinct locations and at different time instants, are represented as time series of the corresponding measurements, generating a sequence of TINs. Different compression techniques applied to location-specific time series may have different impacts on the representation of the global evolution of TINs-depending on the distance functions used to evaluate the distortion. CET-LATS users can view and analyze compression vs. (im)precision trade-offs over multiple compression methods and distance functions, and decide which method works best for their application. We also provide an option to investigate the impact of the choice of a compression method on the quality of prediction. Our prototype is a web-based system using Flask, a lightweight Python framework, relying on Apache Spark for data management and JSON files to communicate with the front-end, enabling extensibility in terms of adding new data sources as well as compression techniques, distance functions and prediction methods. CCS CONCEPTS • Information systems → Spatial-temporal systems; Web applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.