We demonstrate a new guiding regime termed endlessly mono-radial, in the proposed annular core photonic crystal fiber (AC-PCF), whereby only modes of the fundamental radial order are supported by the fiber at all input wavelengths. This attribute is of high interest for applications that require the stable and broadband guiding of mono-radial (i.e. doughnut shaped) cylindrical vector beams and vortex beams carrying orbital angular momentum. We further show that one can significantly tailor the chromatic dispersion and optical nonlinearities of the waveguide through proper optimization of the photonic crystal microstructured cladding. The analytical investigation of the remarkable modal properties of the AC-PCF is validated by full-vector simulations. As an example, we performed simulations of the nonlinear fiber propagation of short femtosecond pulses at 835 nm center wavelength and kilowatt-level peak power, which indicate that the AC-PCF represents a promising avenue to investigate the supercontinuum generation of optical vortex light. The proposed fiber design has potential applications in space-division multiplexing, optical sensing and super-resolution microscopy.
In this work, we demonstrate the measurement of the Brillouin gain spectra of vector modes in a few-mode fiber for the first time using a simple heterodyne detection technique. A tunable long period fiber grating is used to selectively excite the vector modes supported by the few-mode fiber. Further, we demonstrate the non-destructive measurement of the absolute effective refractive indices (n
eff) of vector modes with ~10−4 accuracy based on the acquired Brillouin frequency shifts of the modes. The proposed technique represents a new tool for probing and controlling vector modes as well as modes carrying orbital angular momentum in optical fibers with potential applications in advanced optical communications and multi-parameter fiber-optic sensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.