This work reports on the nanomechanical metrology of vertically aligned gallium nitride micropillar arrays with high homogeneity and well‐controlled geometry. The GaN micro‐building blocks are top‐down fabricated by combining photolithography, inductively coupled plasma dry reactive ion etching (ICP‐DRIE) with SF6/H2 gases, and post‐wet chemical etching treatment by a KOH‐based solution. A nanoindenter with a three‐sided pyramid Berkovich tip is employed to precisely measure the mechanical properties of the GaN micropillars directly from their top surfaces, hence an additional preparatory work to transfer them on a foreign substrate is not necessary. From the obtained experimental results, the insight of the indentation pop‐in phenomenon on the micropillars is carefully investigated. Besides, a confocal laser scanning microscope (CLSM) and an atomic force microscope (AFM) are utilized to confirm the high homogeneity of the micropillar arrays before indentation and to characterize the morphologies of their top surfaces after stress relaxation, respectively. Therefore, the obtained experimental results can be employed as the prior knowledge to be compared with the bulk counterparts, in which the GaN micropillars can be further developed for mechanical force sensors, since the performed measurement techniques have provided the existent mechanical circumstance of the microstructures when a vertical force is applied.
Vertically aligned 3D gallium nitride (GaN) nanowire arrays with sub-50 nm feature sizes were fabricated using a nanosphere lift-off lithography (NSLL) technique combined with hybrid top-down etching steps (i.e., inductively coupled plasma dry reactive ion etching (ICP-DRIE) and wet chemical etching). Owing to the well-controlled chemical surface treatment prior to the nanobead deposition and etching process, vertical GaN nanowire arrays with diameter of ~35 nm, pitch of ~350 nm, and aspect ratio of >10 could be realized using 500 nm polystyrene nanobead (PN) masks. This work has demonstrated a feasibility of using NSLL as an alternative for other sophisticated but expensive nanolithography methods to manufacture low-cost but highly ordered 3D GaN nanostructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.