Serp-1 is a secreted myxoma viral serine protease inhibitor (serpin) with proven, highly effective, anti-inflammatory defensive activity during host cell infection, as well as potent immunomodulatory activity in a wide range of animal disease models. Serp-1 binds urokinase-type plasminogen activator (uPA) and the tissue-type PA, plasmin, and factor Xa, requiring uPA receptor (uPAR) for anti-inflammatory activity. To define Serp-1-mediated effects on inflammatory cell activation, we examined the association of Serp-1 with monocytes and T cells, effects on cellular migration, and the role of uPAR-linked integrins and actin-binding proteins in Serp-1 cellular responses. Our results show that Serp-1 associates directly with activated monocytes and T lymphocytes, in part through interaction with uPAR (P<0.001). Serp-1, but not mammalian serpin PA inhibitor-1 (PAI-1), attenuated cellular adhesion to the extracellular matrix. Serp-1 and PAI-1 reduced human monocyte and T cell adhesion (P<0.001) and migration across endothelial monolayers in vitro (P<0.001) and into mouse ascites in vivo (P<0.001). Serp-1 and an inactive Serp-1 mutant Serp-1(SAA) bound equally to human monocytes and T cells, but a highly proinflammatory mutant, Serp-1(Ala(6)), bound less well to monocytes. Serp-1 treatment of monocytes increased expression of filamin B actin-binding protein and reduced CD18 (beta-integrin) expression (P<0.001) in a uPAR-dependent response. Filamin colocalized and co-immunoprecipitated with uPAR, and short interference RNA knock-down of filamin blocked Serp-1 inhibition of monocyte adhesion. We report here that the highly potent, anti-inflammatory activity of Serp-1 is mediated through modification of uPAR-linked beta-integrin and filamin in monocytes, identifying this interaction as a central regulatory axis for inflammation.
Serpins maintain haemostasis through regulation of serine proteinases in the thrombotic and thrombolytic pathways. Viruses encode serpins that can alter thrombotic and thrombolytic responses producing, in some cases, disseminated intravascular coagulation (DIC). However, it has not been precisely defined how viral serpins induce these profound responses. The rabbit myxoma viral serpin, Serp-1 inhibits urokinase- and tissue-type plasminogen activators (uPA and tPA), plasmin and factor Xa in vitro and exhibits remarkable anti-inflammatory activity in various animal models. The effects of Serp-1 on activation of human platelets, endothelial cells, monocytes and T cells that mediate thrombosis and innate immune responses were therefore examined. We found that Serp-1 attenuated platelet and mononuclear cell adhesion to fibronectin and collagen. Serp-1 similarly inhibited monocyte migration into the peritoneum. Serp-1 inhibition of monocyte migration was lost in uPA receptor (uPAR) deficient mice. Serp-1 bound to the plasma membrane surface and altered uPA activation of endothelial cells (p=0.001), thrombin activation of platelets (p=0.021) and phorbol ester activation of endothelial (p=0.047), monocyte (p=0.011) and Jurkat T cells (p=0.012) as measured by intracellular calcium. Modulation of cellular activation was confirmed by membrane fluidity analysis. Microarray analysis of Serp-1 treated endothelial cells revealed alterations in Inositol 1,4,5-triphosphate receptor type II (ITPR2) a calcium-regulating gene. This study demonstrates the unique capacity of a viral serpin, Serp-1 to modify adhesion, activation, gene expression and calcium homeostasis in a wide range of cells that regulate coagulation and inflammation. Endothelial cells potentially represent a pivotal regulatory point for Serp-1 anti-inflammatory activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.