Titanium diboride (TiB2), a layered ceramic material, is well-known for its ultrahigh strength, wear resistance, and chemical inertness. In this work, we present a simple one-pot chemical approach that yields...
The rheological behavior and microstructure of branched, cationic wormlike micellar (WLM) solutions of 40 mM erucyl bis(hydroxyethyl)methylammonium chloride (EHAC) are studied as a function of added salt (sodium salicylate) concentration, temperature, and shear rate via Rheosmall-angle light scattering (Rheo-SALS). These WLM solutions exhibit shear-enhanced concentration fluctuations leading to shear-induced phase separation (SIPS), manifested as visual turbidity under shear and the appearance of a characteristic “butterfly” scattering pattern in Rheo-SALS experiments. Flow kinematics measurements in a Couette geometry are used to determine the relationship between SIPS and shear banding, i.e., the splitting of the flow into shear bands with different local shear rates. Modeling using the Giesekus constitutive equation aids in discrimination between banding and nonbanding solutions. The combination of Rheo-SALS, dynamic rheology, velocimetry, and constitutive equation modeling allows detailed exploration of the relationship between SIPS, shear banding, fluid microstructure, and the equilibrium phase behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.