In the present study we quantify stress by measuring transient perspiratory responses on the perinasal area through thermal imaging. These responses prove to be sympathetically driven and hence, a likely indicator of stress processes in the brain. Armed with the unobtrusive measurement methodology we developed, we were able to monitor stress responses in the context of surgical training, the quintessence of human dexterity. We show that in dexterous tasking under critical conditions, novices attempt to perform a task's step equally fast with experienced individuals. We further show that while fast behavior in experienced individuals is afforded by skill, fast behavior in novices is likely instigated by high stress levels, at the expense of accuracy. Humans avoid adjusting speed to skill and rather grow their skill to a predetermined speed level, likely defined by neurophysiological latency.
The current dominant approaches to face recognition rely on facial characteristics that are on or over the skin. Some of these characteristics have low permanency can be altered, and their phenomenology varies significantly with environmental factors (e.g., lighting). Many methodologies have been developed to address these problems to various degrees. However, the current framework of face recognition research has a potential weakness due to its very nature. We present a novel framework for face recognition based on physiological information. The motivation behind this effort is to capitalize on the permanency of innate characteristics that are under the skin. To establish feasibility, we propose a specific methodology to capture facial physiological patterns using the bioheat information contained in thermal imagery. First, the algorithm delineates the human face from the background using the Bayesian framework. Then, it localizes the superficial blood vessel network using image morphology. The extracted vascular network produces contour shapes that are characteristic to each individual. The branching points of the skeletonized vascular network are referred to as Thermal Minutia Points (TMPs) and constitute the feature database. To render the method robust to facial pose variations, we collect for each subject to be stored in the database five different pose images (center, midleft profile, left profile, midright profile, and right profile). During the classification stage, the algorithm first estimates the pose of the test image. Then, it matches the local and global TMP structures extracted from the test image with those of the corresponding pose images in the database. We have conducted experiments on a multipose database of thermal facial images collected in our laboratory, as well as on the time-gap database of the University of Notre Dame. The good experimental results show that the proposed methodology has merit, especially with respect to the problem of low permanence over time. More importantly, the results demonstrate the feasibility of the physiological framework in face recognition and open the way for further methodological and experimental research in the area.
We describe a multimodal dataset acquired in a controlled experiment on a driving simulator. The set includes data for n=68 volunteers that drove the same highway under four different conditions: No distraction, cognitive distraction, emotional distraction, and sensorimotor distraction. The experiment closed with a special driving session, where all subjects experienced a startle stimulus in the form of unintended acceleration—half of them under a mixed distraction, and the other half in the absence of a distraction. During the experimental drives key response variables and several explanatory variables were continuously recorded. The response variables included speed, acceleration, brake force, steering, and lane position signals, while the explanatory variables included perinasal electrodermal activity (EDA), palm EDA, heart rate, breathing rate, and facial expression signals; biographical and psychometric covariates as well as eye tracking data were also obtained. This dataset enables research into driving behaviors under neatly abstracted distracting stressors, which account for many car crashes. The set can also be used in physiological channel benchmarking and multispectral face recognition.
We present a two-stage face recognition method based on infrared imaging and statistical modeling. In the first stage we reduce the search space by finding highly likely candidates before arriving at a singular conclusion during the second stage. Previous work has shown that Bessel forms model accurately the marginal densities of filtered components and can be used to find likely matches but not a unique solution [1]. We present an enhancement to this approach by applying Bessel modeling on the facial region only rather than the entire image and by pipelining a classification algorithm to produce a unique solution. The detailed steps of our method are as follows: First, the faces are separated from the background using adaptive fuzzy connectedness segmentation. Second, Gabor filtering is used as a spectral analysis tool. Third, the derivative filtered images are modeled using two-parameter Bessel forms. Fourth, high probability subjects are short-listed by applying the L 2 -norm on the Bessel models. Finally, the resulting set of highly likely matches is fed to a Bayesian classifier to find the exact match. We show experimentally that segmentation of the facial regions results in better hypothesis pruning and classification performance. We also present comparative experimental results with an eigenface approach to highlight the potential of our method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.