Ester bond hydrolysis of membrane phospholipids by Phospholipase A2 and consequent release of fatty acids are the initiating steps of inflammation. It is proposed in this study that the inhibition of phospholipase A2 is one of the ways to control inflammation. Investigations are carried out to identify the mode of inhibition of phospholipase A2 by the n‐hexadecanoic acid. It may help in designing of specific inhibitors of phospholipase A2 as anti‐inflammatory agents. The enzyme kinetics study proved that n‐hexadecanoic acid inhibits phospholipase A2 in a competitive manner. It was identified from the crystal structure at 2.5 Å resolution that the position of n‐hexadecanoic acid is in the active site of the phospholipase A2. The binding constant and binding energy have also been calculated using Isothermal Titration Calorimetry. Also, the binding energy of n‐hexadecanoic acid to phospholipase A2 was calculated by in silico method and compared with known inhibitors. It may be concluded from the structural and kinetics studies that the fatty acid, n‐hexadecanoic acid, is an inhibitor of phospholipase A2, hence, an anti‐inflammatory compound. The inferences from the present study validate the rigorous use of medicated oils rich in n‐hexadecanoic acid for the treatment of rheumatic symptoms in the traditional medical system of India, Ayurveda.
Translation, the mRNA-templated synthesis of peptides by the ribosome, can be manipulated to incorporate variants of the 20 cognate amino acids. Such approaches for expanding the range of chemical entities that can be produced by the ribosome may accelerate the discovery of molecules that can perform functions for which poorly folded, short peptidic sequences are ill suited. Here, we show that the ribosome tolerates some artificial helical aromatic oligomers, so-called foldamers. Using a flexible tRNA-acylation ribozyme-flexizyme-foldamers were attached to tRNA, and the resulting acylated tRNAs were delivered to the ribosome to initiate the synthesis of non-cyclic and cyclic foldamer-peptide hybrid molecules. Passing through the ribosome exit tunnel requires the foldamers to unfold. Yet foldamers encode sufficient folding information to influence the peptide structure once translation is completed. We also show that in cyclic hybrids, the foldamer portion can fold into a helix and force the peptide segment to adopt a constrained and stretched conformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.