With development of Internet and Natural Language processing, use of regional languages is also grown for communication. Sentiment analysis is natural language processing task that extracts useful information from various data forms such as reviews and categorize them on basis of polarity. One of the sub-domain of opinion mining is sentiment analysis which is basically focused on the extraction of emotions and opinions of the people towards a particular topic from textual data. In this paper, sentiment analysis is performed on IMDB movie review database. We examine the sentiment expression to classify the polarity of the movie review on a scale of negative to positive and perform feature extraction and ranking and use these features to train our multilevel classifier to classify the movie review into its correct label. In this paper classification of movie reviews into positive and negative classes with the help of machine learning. Proposed approach using classification techniques has the best accuracy of about 99%.
Research on classifying high dimensional datasets is an open direction in the pattern recognition yet. High dimensional feature spaces cause scalability problems for machine learning algorithms because the complexity of a high dimensional space increases exponentially with the number of features. Recently a number of ensemble techniques using different classifiers have proposed for classifying the high dimensional datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.