Atomically precise fabrication has an important role to play in developing atom-based electronic devices for use in quantum information processing, quantum materials research, and quantum sensing. Atom-by-atom fabrication has the potential to enable precise control over tunnel coupling, exchange coupling, on-site charging energies, and other key properties of basic devices needed for solid state quantum computing and analog quantum simulation. Using hydrogen-based scanning probe lithography, individual dopant atoms are deterministically placed relative to atomically aligned contacts and gates to build single electron transistors, single atom transistors, and gate-controlled quantum sensing devices. The key steps required to fabricate and demonstrate the essential building blocks needed for spin selective initialization/readout, and coherent quantum manipulation are described.
Atomically precise donor-based quantum devices are a promising candidate for solid-state quantum computing and analog quantum simulations. However, critical challenges in atomically precise fabrication have meant systematic, atomic scale control of the tunneling rates and tunnel coupling has not been demonstrated. Here using a room temperature grown locking layer and precise control over the entire fabrication process, we reduce unintentional dopant movement while achieving high quality epitaxy in scanning tunnelling microscope (STM)-patterned devices. Using the Si(100)2 × 1 surface reconstruction as an atomically-precise ruler to characterize the tunnel gap in precision-patterned single electron transistors, we demonstrate the exponential scaling of the tunneling resistance on the tunnel gap as it is varied from 7 dimer rows to 16 dimer rows. We demonstrate the capability to reproducibly pattern devices with atomic precision and a donor-based fabrication process where atomic scale changes in the patterned tunnel gap result in the expected changes in the tunneling rates.
Hydrogen atoms on a silicon surface, H–Si (100), behave as a resist that can be patterned with perfect atomic precision using a scanning tunneling microscope. When a hydrogen atom is removed in this manner, the underlying silicon presents a chemically active site, commonly referred to as a dangling bond. It has been predicted that individual dangling bonds fUnction as artificial atoms, which, if grouped together, can form designer molecules on the H–Si (100) surface. Here, we present an artificial ring structure molecule spanning three dimer rows, constructed from dangling bonds, and verified by spectroscopic measurement of its molecular orbitals. We found that removing 8 hydrogen atoms resulted in a molecular analog to 1,4-disilylene-hexasilabenzene (Si8H8). Scanning tunneling spectroscopic measurements reveal molecular π and π* orbitals that agree with those expected for the same molecule in a vacuum; this is validated by density functional theory calculations of the dangling bond system on a silicon slab that show direct links both to the experimental results and to calculations for the isolated molecule. We believe the unique electronic structure of artificial molecules constructed in this manner can be engineered to enable future molecule-based electronics, surface catalytic functionality, and templating for subsequent site-selective deposition.
Advanced hydrogen lithography techniques and low-temperature epitaxial overgrowth enable the patterning of highly phosphorus-doped silicon (Si:P) monolayers (ML) with atomic precision. This approach to device fabrication has made Si:P monolayer systems a testbed for multiqubit quantum computing architectures and atomically precise 2-D superlattice designs whose behaviors are directly tied to the deterministic placement of single dopants. However, dopant segregation, diffusion, surface roughening, and defect formation during the encapsulation overgrowth introduce large uncertainties to the exact dopant placement and activation ratio. In this study, we develop a unique method by combining dopant segregation/diffusion models with sputter profiling simulation to monitor and control, at the atomic scale, dopant movement using room-temperature grown locking layers (LLs). We explore the impact of LL growth rate, thickness, rapid thermal annealing, surface accumulation, and growth front roughness on dopant confinement, local crystalline quality, and electrical activation within Si:P 2-D systems. We demonstrate that dopant movement can be more efficiently suppressed by increasing the LL growth rate than by increasing the LL thickness. We find that the dopant segregation length can be suppressed below a single Si lattice constant by increasing the LL growth rates at room temperature while maintaining epitaxy. Although dopant diffusivity within the LL is found to remain high (on the order of 10 cm s) even below the hydrogen desorption temperature, we demonstrate that exceptionally sharp dopant confinement with high electrical quality within Si:P monolayers can be achieved by combining a high LL growth rate with low-temperature LL rapid thermal annealing. The method developed in this study provides a key tool for 2-D fabrication techniques that require precise dopant placement to suppress, quantify, and predict a single dopant's movement at the atomic scale.
Articles you may be interested inSub-20nm silicon patterning and metal lift-off using thermal scanning probe lithography Reducing the scale of etched nanostructures below the 10 nm range eventually will require an atomic scale understanding of the masks being used in order to maintain exquisite control over both feature size and feature density. Here, the authors demonstrate a method for tracking atomically resolved and controlled structures from initial template definition through final nanostructure metrology, opening up a pathway for top-down atomic control over nanofabrication. First, hydrogen depassivation lithography is performed on hydrogen terminated Si(100) using a scanning tunneling microscope, which spatially defined chemically reactive regions. Next, atomic layer deposition of titanium dioxide produces an etch-resistant hard mask pattern on these regions. Reactive ion etching then transfers the mask pattern onto Si with pattern height of 17 nm, critical dimension of approximately 6 nm, and full-pitch down to 13 nm. The effects of linewidth, template atomic defect density, and line-edge roughness are examined in the context of controlling fabrication with arbitrary feature control, suggesting a possible critical dimension down to 2 nm on 10 nm tall features. A metrology standard is demonstrated, where the atomically resolved mask template is used to determine the size of a nanofabricated sample showing a route to image correction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.