Underwater acoustic sensor networks (UASNs) have gained attention among researchers due to its various aquatic applications. On the other hand, UASNs encounter many research challenges due to its inherent characteristics such as high propagation delay, limited bandwidth, high bit-error-rate, limited energy, and communication void during routing. These limitations severely affect the performance of delay-sensitive and reliable applications of UASNs. The primary objective of this study is to address the communication void during routing. Various methods, such as backward-forwarding, passive participation, flooding, heuristic, and transmission power adjustments, are proposed to address the communication void during routing. The major drawbacks of these methods are void as a part of routing, loops, unreachable data to the sink, and more number of transmission of duplicate packets. This study proposes a void avoidance routing algorithm referred to as enhancedvoid avoidance routing (E-VAR) using an idea of void awareness among the nodes. The E-VAR inhibits the participation of void in routing, thereby resulting in better performance in comparison with the state-of-the-art. Through MATLAB simulations, E-VAR is compared with interference-aware routing and state-of-the-art backward-forwarding, in terms of the number of nodes reachable and unreachable due to looping to the sink, average hop-count, and distance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.