miRNAs are generally classified as "intergenic" or "intronic" based upon their genomic location. Intergenic miRNAs are known to be transcribed as independent transcription units, while intronic miRNAs are believed to be processed from the introns of their hosting transcription units and hence share common regulatory mechanisms and expression patterns with its host gene. Recent reports in the literature suggest that some intronic miRNAs, which do not show concordance in expression with their respective host genes, might be transcribed and regulated as independent transcription units. However, there is no direct evidence for the existence of independently transcribed intronic miRNA in humans to date. We have characterized the fulllength primary transcripts (pri-miRNAs) of three human intronic miRNAs-miR 106b, miR 93, and miR 24-1-by RNA ligasemediated RACE and show that human intronic miRNA can indeed be transcribed as independent transcription units. Also, clustered miRNAs are generally believed to arise from a common primary transcript and are expected to have similar expression profiles. However, we have identified several novel alternatively spliced transcripts by RT-PCR, each of which harbors a single pre-miRNA from a cluster of closely located intronic miRNAs. We show that these transcripts represent unique pri-miRNAs for each of these clustered miRNAs. We also report the identification of conserved splice acceptor signals which are responsible for maturation of these novel splice variants. Our results suggest that alternative splicing might play a role in uncoupling the expression of clustered miRNAs from each other, which otherwise are generally believed to be cotranscribed and co-expressed.Keywords: miRNA biogenesis; intronic miRNA; alternative splicing; clustered miRNA; miRs 106b-93-25; miRs 23b-27b-24-1
SummaryHematopoietic stem cells (HSCs) inhabit distinct microenvironments within the adult bone marrow (BM), which govern the delicate balance between HSC quiescence, self-renewal, and differentiation. Previous reports have proposed that HSCs localize to the vascular niche, comprised of endothelium and tightly associated perivascular cells. Herein, we examine the capacity of BM endothelial cells (BMECs) to support ex vivo and in vivo hematopoiesis. We demonstrate that AKT1-activated BMECs (BMEC-Akt1) have a unique transcription factor/cytokine profile that supports functional HSCs in lieu of complex serum and cytokine supplementation. Additionally, transplantation of BMEC-Akt1 cells enhanced regenerative hematopoiesis following myeloablative irradiation. These data demonstrate that BMEC-Akt1 cultures can be used as a platform for the discovery of pro-HSC factors and justify the utility of BMECs as a cellular therapy. This technical advance may lead to the development of therapies designed to decrease pancytopenias associated with myeloablative regimens used to treat a wide array of disease states.
Haematopoietic stem cells (HSCs) reside in distinct niches within the bone marrow (BM) microenvironment, comprised of endothelial cells (ECs) and tightly associated perivascular constituents that regulate haematopoiesis through the expression of paracrine factors. Here we report that the canonical NF-κB pathway in the BM vascular niche is a critical signalling axis that regulates HSC function at steady state and following myelosuppressive insult, in which inhibition of EC NF-κB promotes improved HSC function and pan-haematopoietic recovery. Mice expressing an endothelial-specific dominant negative IκBα cassette under the Tie2 promoter display a marked increase in HSC activity and self-renewal, while promoting the accelerated recovery of haematopoiesis following myelosuppression, in part through protection of the BM microenvironment following radiation and chemotherapeutic-induced insult. Moreover, transplantation of NF-κB-inhibited BM ECs enhanced haematopoietic recovery and protected mice from pancytopenia-induced death. These findings pave the way for development of niche-specific cellular approaches for the treatment of haematological disorders requiring myelosuppressive regimens.
Inflammatory signals arising from the microenvironment have emerged as critical regulators of hematopoietic stem cell (HSC) function during diverse processes including embryonic development, infectious diseases, and myelosuppressive injuries caused by irradiation and chemotherapy. However, the contributions of cellular subsets within the microenvironment that elicit niche-driven inflammation remain poorly understood. Here, we identify endothelial cells as a crucial component in driving bone marrow (BM) inflammation and HSC dysfunction observed following myelosuppression. We demonstrate that sustained activation of endothelial MAPK causes NF-κB-dependent inflammatory stress response within the BM, leading to significant HSC dysfunction including loss of engraftment ability and a myeloid-biased output. These phenotypes are resolved upon inhibition of endothelial NF-κB signaling. We identify SCGF as a niche-derived factor that suppresses BM inflammation and enhances hematopoietic recovery following myelosuppression. Our findings demonstrate that chronic endothelial inflammation adversely impacts niche activity and HSC function which is reversible upon suppression of inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.