SUMMARY
Aging is the major risk factor for many human diseases. In vitro studies have demonstrated that cellular reprogramming to pluripotency reverses cellular age, but alteration of the aging process through reprogramming has not been directly demonstrated in vivo. Here, we report that partial reprogramming by short-term cyclic expression of Oct4, Sox2, Klf4, and c-Myc (OSKM) ameliorates cellular and physiological hallmarks of aging and prolongs lifespan in a mouse model of premature aging. Similarly, expression of OSKM in vivo improves recovery from metabolic disease and muscle injury in older wild-type mice. The amelioration of age-associated phenotypes by epigenetic remodeling during cellular reprogramming highlights the role of epigenetic dysregulation as a driver of mammalian aging. Establishing in vivo platforms to modulate age-associated epigenetic marks may provide further insights into the biology of aging.
In the mammalian ovary, progressive activation of primordial follicles from the dormant pool serves as the source of fertilizable ova. Menopause, or the end of female reproductive life, occurs when the primordial follicle pool is exhausted. However, the molecular mechanisms underlying follicle activation are poorly understood. We provide genetic evidence that in mice lacking PTEN (phosphatase and tensin homolog deleted on chromosome 10) in oocytes, a major negative regulator of phosphatidylinositol 3-kinase (PI3K), the entire primordial follicle pool becomes activated. Subsequently, all primordial follicles become depleted in early adulthood, causing premature ovarian failure (POF). Our results show that the mammalian oocyte serves as the headquarters of programming of follicle activation and that the oocyte PTEN-PI3K pathway governs follicle activation through control of initiation of oocyte growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.