SUMMARY
Transcription by RNA polymerase II (RNAPII) is pervasive in the human genome. However, the mechanisms controlling transcription at promoters and enhancers remain enigmatic. Here, we demonstrate that Integrator subunit 11 (INTS11), the catalytic subunit of the Integrator complex, regulates transcription at these loci through its endonuclease activity. Promoters of genes require INTS11 to cleave nascent transcripts associated with paused RNAPII and induce their premature termination in the proximity of the +1 nucleosome. The turnover of RNAPII permits the subsequent recruitment of an elongation-competent RNAPII complex, leading to productive elongation. In contrast, enhancers require INTS11 catalysis not to evict paused RNAPII but rather to terminate enhancer RNA transcription beyond the +1 nucleosome. These findings are supported by the differential occupancy of negative elongation factor (NELF), SPT5, and tyrosine-1-phosphorylated RNAPII. This study elucidates the role of Integrator in mediating transcriptional elongation at human promoters through the endonucleolytic cleavage of nascent transcripts and the dynamic turnover of RNAPII.
MicroRNA (miRNA) homeostasis is crucial for the post-transcriptional regulation of their target genes and miRNA dysregulation has been linked to multiple diseases, including cancer. The molecular mechanisms underlying miRNA biogenesis from processing of primary miRNA transcripts to formation of mature miRNA duplex are well understood. Loading of miRNA duplex into members of the Argonaute (Ago) protein family, representing the core of the RNA-induced silencing complex (RISC), is pivotal to miRNA-mediated gene silencing. The Integrator complex has been previously shown to be an important regulator of RNA maturation, RNA polymerase II pause-release, and premature transcriptional termination. Here, we report that loss of Integrator results in global diminution of mature miRNAs. By incorporating 4-Thiouridine (s4U) in nascent transcripts, we traced miRNA fate from biogenesis to stabilization and identified Integrator to be essential for proper miRNA assembly into RISC. Enhanced UV crosslinking and immunoprecipitation (eCLIP) of Integrator confirms a robust association with mature miRNAs. Indeed, Integrator potentiates Ago2-mediated cleavage of target RNAs. These findings highlight an essential role for Integrator in miRNA abundance and RISC function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.