Since the first report on electromagnetic interference (EMI) shielding of 2D Ti 3 C 2 T x in 2016, MXenes have captured the leadership position among lightweight shielding materials due to many advantages, including their excellent shielding performance, outstanding metallic conductivity, low density, large specific surface area, tunable surface chemistry, and solution processability. MXenes triggered a huge interest in the materials research community, leading to over 100 reported publications on MXenes' EMI shielding within 3 years. Many MXenes composites and hybrids in different structural forms, such as compact and laminate structures, layer-by-layer assemblies, porous foams and aerogels, and segregated structures, have been explored to further improve the intrinsic EMI shielding properties of MXenes. This article comprehensively reviews the recent advancements in MXene-based EMI shielding materials with different structural morphologies and provides an insight into future challenges and guidelines for finding material solutions for the nextgeneration shielding applications.
High performance γ-Fe2O3 decorated rGO–polyaniline core–shell tubes demonstrated exceptional EMI shielding which could be an ultimate choice for future building block material in EMI SE applications.
Lightweight materials with high electrical conductivity and robust mechanical properties are highly desirable for electromagnetic interference (EMI) shielding in modern portable and highly integrated electronics. Herein, a three-dimensional (3D) porous Ti 3 C 2 T x /carbon nanotube (CNT) hybrid aerogel was fabricated via a bidirectional freezing method for lightweight EMI shielding application. The synergism of the lamellar and porous structure of the MXene/CNT hybrid aerogels contributed extensively to their excellent electrical conductivity (9.43 S cm −1 ) and superior electromagnetic shielding effectiveness (EMI SE) value of 103.9 dB at 3 mm thickness at the X-band frequency, the latter of which is the best value reported for synthetic porous nanomaterials. The CNT reinforcement in the MXene/CNT hybrid aerogels enhanced the mechanical robustness and increased the compressional modulus by 9661% relative to that of the pristine MXene aerogel. The hybrid aerogel with high electrical conductivity, good mechanical strength, and superior EMI shielding performance is a promising material for inhibiting EMI pollution.
There is an increased interest in the development of high performance microwave shielding materials against electromagnetic pollution in recent years. Barium ferrite decorated reduced graphene oxide
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.