In agricultural regions, the procedure of weed removal is crucial. Weed removal in the classic way, takes longer and requires greater physical effort. The idea is to eliminate weeds from agricultural fields automatically. The proposed study uses a deep learning algorithm to detect weeds growing between crops. Deep learning method also known as deep learning is used to analyse the main properties of agricultural photographs. Weeds and crops have been identified using the dataset. Convolutional neural network (CNN) uses a completely attached surface with rectified linear units (RELU) to differentiate weed and crop. It extracts features of crop using deep learning. The CNN uses features of proceeded image to extract region of interest (ROI). A deep learning network features are used to identify crop. In total of 1280 images are used for testing the system, and 10 images are used to find the confidence score.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.