Polymers have been proven to be an interesting class of adsorbents applied in water treatment. Biopolymers are of special interest due to their unique properties such as biocompatibility, biodegradability, and reusability. This work reports a composite formed by a chitosan biopolymer and activated charcoal using sodium citrate as a crosslinking agent. The chitosan–citrate-activated charcoal composite (CCA) was characterized using FT–IR, SEM, EDAX, XRD, TGA–DTA and BET surface area analysis. The material was found to be microporous in nature with a surface area of 165.83 m2/g that led to high adsorption capacities toward both the targeted pollutants. In an aqueous phase, the dye adsorption studies were carried out with reactive orange 16 (R-16) dye, while in a gaseous phase, CO2 adsorption capacity was evaluated. Under optimum solution conditions, maximum R-16 dye removal capacity was found to be 34.62 mg g−1, while in the gas phase the CO2 adsorption capacity was found to be 13.15 cm3g−1. Intrinsic microporosity of CCA resulted in an enhanced capture capacity for R-16 dye and carbon dioxide in the respective phases. Material sustainability studies were carried out to evaluate various sustainability parameters.
In this work, we have synthesized Chitosan-Activated Carbon composite (Cs-C) using sodium tripolyphosphate (STTP) as a crosslinker. The Cs-C was characterized through Fourier Transfer Infra Red, X-ray diffraction, Scanning Electron...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.