Exploiting Renewable energy to the maximum extent possible in an electric vehicle charging station (EVCS) is the key in supporting the anticipated carbon reduction from the electric vehicles (EVs). Knowing the expected load and the solar energy in advance at the EVCS can be crucial in framing a proper energy management strategy. Selection of suitable parameters associated with the participating EVs and EVCS are vital in utilizing them for predicting the probable EV load and expected solar energy for a given period under consideration. A prototype EVCS with smart communication infrastructure is developed considering solar pv as the energy source. Real time communication of the parameters between multiple agents has been established effectively using an interactive website, cloud server and an short message service (SMS) application programming interface (API). The data generated from the prototype models have been utilized in a random forest regression (RFR) classifier model in order to predict the probable solar energy and the expected EV load for every minute duration. The integrated communication frame work is found to be less complex to implement for an autonomous direct current (DC EVCS). The details provided at the graphical user interface (GUI) designed at the EVCS can be instrumental in developing a proper energy management strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.