Sentiment analysis is the pre-eminent technology to extract the relevant information from the data domain. In this paper cross domain sentimental classification approach Cross_BOMEST is proposed. Proposed approach will extract <strong>†</strong>ve words using existing BOMEST technique, with the help of Ms Word Introp, Cross_BOMEST determines <strong>†</strong>ve words and replaces all its synonyms to escalate the polarity and blends two different domains and detects all the self-sufficient words. Proposed Algorithm is executed on Amazon datasets where two different domains are trained to analyze sentiments of the reviews of the other remaining domain. Proposed approach contributes propitious results in the cross domain analysis and accuracy of 92 % is obtained. Precision and Recall of BOMEST is improved by 16% and 7% respectively by the Cross_BOMEST.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.