BackgroundDermatophytes are a group of closely related keratinophilic fungi that can invade keratinized humans and animals tissues such as skin, hair and nails causing dermatophytosis. They are an important cause of superficial fungal infection.FindingsConventional methods like potassium hydroxide (KOH) microscopy and fungal culture lacks the ability to make an early and specific diagnosis. In this study we have evaluated nested Polymerase chain reaction (PCR) using primers targeting dermatophyte specific sequence of chitin synthase 1 (CHS1) gene and compared with conventional test. A total of 155 patients clinically suspected with dermatophytosis were included in the study. Of which 105 specimens were skin scrapings and 50 were hair. KOH microscopy, fungal culture and first round and nested PCR were done on clinical specimens, and results compared. Nested PCR for dermatophytes was positive in 83.8% specimens, followed by KOH microscopy (70%), first round PCR (50.8) and fungal culture (25.8).ConclusionResults indicate that nested PCR may be considered as gold standard for the diagnosis of dermatophytosis and can aid the clinician in initiating prompt and appropriate antifungal therapy.
In this study, nested PCR using novel primers targeting the pan-dermatophyte-specific sequence of the chitin synthase 1 gene (CHS1) was compared with KOH microscopy, culture isolation, and single-round PCR for diagnosis of 152 patients with clinically suspected onychomycosis. Results indicate that nested PCR may be considered the gold standard for the diagnosis of cases of onychomycosis for which the etiological agents are dermatophytes.
Bacterial biofilm has been reported to be associated with more than 80% of bacterial infections. Curcumin, a hydrophobic polyphenol compound, has anti-quorum sensing activity apart from having antimicrobial action. However, its use is limited by its poor aqueous solubility and rapid degradation. In this study, we attempted to prepare quantum dots of the drug curcumin in order to achieve enhanced solubility and stability and investigated for its antimicrobial and antibiofilm activity. We utilized a newer two-step bottom up wet milling approach to prepare Curcumin Quantum Dots (CurQDs) using acetone as a primary solvent. Minimum inhibitory concentration against select Gram-positive and Gram-negative bacteria was performed. The antibiofilm assay was performed at first using 96-well tissue culture plate and subsequently validated by Confocal Laser Scanning Microscopy. Further, biofilm matrix protein was isolated using formaldehyde sludge and TCA/Acetone precipitation method. Protein extracted was incubated with varying concentration of CurQDs for 4 h and was subjected to SDS–PAGE. Molecular docking study was performed to observe interaction between curcumin and phenol soluble modulins as well as curli proteins. The biophysical evidences obtained from TEM, SEM, UV-VIS, fluorescence, Raman spectroscopy, and zeta potential analysis confirmed the formation of curcumin quantum dots with increased stability and solubility. The MICs of curcumin quantum dots, as observed against both select gram positive and negative bacterial isolates, was observed to be significantly lower than native curcumin particles. On TCP assay, Curcumin observed to be having antibiofilm as well as biofilm degrading activity. Results of SDS–PAGE and molecular docking have shown interaction between biofilm matrix proteins and curcumin. The results indicate that aqueous solubility and stability of Curcumin can be achieved by preparing its quantum dots. The study also demonstrates that by sizing down the particle size has not only enhanced its antimicrobial properties but it has also shown its antibiofilm activities. Further, study is needed to elucidate the exact nature of interaction between curcumin and biofilm matrix proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.