The present study aims at investigating the cyclic flexural behavior of reinforced concrete beams with varying depths. Five reinforced concrete beams with beam depth ranging from 250 mm to 750 mm were tested under reversed cyclic loading and the influence of beam depth on the flexural strength and ductility of reinforced concrete beams was investigated. In addition, OpenSees was used to model the test specimens and the analytical results were compared with the experimental reuslts. It is shown that there is no apparent size effect on the normalized ultimate flexural strength of the tested beams, while for the displacement ductility factor, a significant size effect is observed. Load-deflection hysteric curves of test specimens obtained by the fiber-based element of OpenSees with Concrete03 and Hysteric models are in good agreement with those from experimental tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.