Background: Saliva of blood-sucking arthropods contains a cocktail of antihemostatic agents and immunomodulators that help blood feeding. Mosquitoes additionally feed on sugar meals and have specialized regions of their glands containing glycosidases and antimicrobials that might help control bacterial growth in the ingested meals. To expand our knowledge on the salivary cocktail of AEdes aegypti, a vector of dengue and yellow fevers, we analyzed a set of 4,232 expressed sequence tags from cDNA libraries of adult female mosquitoes.
Oxygen generating biomaterials represent a new trend in regenerative medicine that aims to generate and supply oxygen at the site of requirement, to support tissue healing and regeneration. To enhance the healing of dermal wounds, we have developed a highly portable, in situ oxygen generating wound dressings that uses sodium percarbonate (SPO) and calcium peroxide (CPO) as chemical oxygen sources. The dressing continuously generated oxygen for more than 3 days, after which it was replaced. In the in vivo testing on porcine full-thickness porcine wound model, the SPO/CPO dressing showed enhanced wound healing during the 8 week study period. Quantitative measurements of wound healing related parameters, such as wound closure, reepithelialization, epidermal thickness and collagen content of dermis showed that supplying oxygen topically using the SPO/CPO dressing significantly accelerated the wound healing. An increase in neovascularization, as determined using Von Willebrand factor (vWF) and CD31 staining, was also observed in the presence of SPO/CPO dressing. This novel design for a wound dressing that contains oxygen generating biomaterials (SPO/CPO) for supplying topical oxygen, may find utility in treating various types of acute to chronic wounds.
Vascular tissue engineering has the potential to make a significant impact on the treatment of a wide variety of medical conditions, including providing in vitro generated vascularized tissue and organ constructs for transplantation. Since the first report on the construction of a biological blood vessel, significant research and technological advances have led to the generation of clinically relevant large and small diameter tissue engineered vascular grafts (TEVGs). However, developing a biocompatible blood-contacting surface is still a major challenge. Researchers are using biomimicry to generate functional vascular grafts and vascular networks. A multi-disciplinary approach is being used that includes biomaterials, cells, pro-angiogenic factors and microfabrication technologies. Techniques to achieve spatiotemporal control of vascularization include use of topographical engineering and controlled-release of growth/pro-angiogenic factors. Use of decellularized natural scaffolds has gained popularity for engineering complex vascularized organs for potential clinical use. Pre-vascularization of constructs prior to implantation has also been shown to enhance its anastomosis after implantation. Host-implant anastomosis is a phenomenon that is still not fully understood. However, it will be a critical factor in determining the in vivo success of a TEVGs or bioengineered organ. Many clinical studies have been conducted using TEVGs, but vascularized tissue/organ constructs are still in the research & development stage. In addition to technical challenges, there are commercialization and regulatory challenges that need to be addressed. In this review we examine recent advances in the field of vascular tissue engineering, with a focus on technology trends, challenges and potential clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.