One of the many services that intelligent systems can provide is the automated assessment of resident well-being. We hypothesize that the functional health of individuals, or ability of individuals to perform activities independently without assistance, can be estimated by tracking their activities using smart home technologies. In this paper, we introduce a machine learning-based method for assessing activity quality in smart homes. To validate our approach we quantify activity quality for 179 volunteer participants who performed a complex, interweaved set of activities in our smart home apartment. We observed a statistically significant correlation (r=0.79) between automated assessment of task quality and direct observation scores. Using machine learning techniques to predict the cognitive health of the participants based on task quality is accomplished with an AUC value of 0.64. We believe that this capability is an important step in understanding everyday functional health of individuals in their home environments.
Smart home technologies offer potential benefits for assisting clinicians by automating health monitoring and well-being assessment. In this paper, we examine the actual benefits of smart home-based analysis by monitoring daily behaviour in the home and predicting standard clinical assessment scores of the residents. To accomplish this goal, we propose a Clinical Assessment using Activity Behavior (CAAB) approach to model a smart home resident’s daily behavior and predict the corresponding standard clinical assessment scores. CAAB uses statistical features that describe characteristics of a resident’s daily activity performance to train machine learning algorithms that predict the clinical assessment scores. We evaluate the performance of CAAB utilizing smart home sensor data collected from 18 smart homes over two years using prediction and classification-based experiments. In the prediction-based experiments, we obtain a statistically significant correlation (r = 0.72) between CAAB-predicted and clinician-provided cognitive assessment scores and a statistically significant correlation (r = 0.45) between CAAB-predicted and clinician-provided mobility scores. Similarly, for the classification-based experiments, we find CAAB has a classification accuracy of 72% while classifying cognitive assessment scores and 76% while classifying mobility scores. These prediction and classification results suggest that it is feasible to predict standard clinical scores using smart home sensor data and learning-based data analysis.
One of the many services that intelligent systems can provide is the ability to analyze the impact of different medical conditions on daily behavior. In this study we use smart home and wearable sensors to collect data while (n=84) older adults perform complex activities of daily living. We analyze the data using machine learning techniques and reveal that differences between healthy older adults and adults with Parkinson disease not only exist in their activity patterns, but that these differences can be automatically recognized. Our machine learning classifiers reach an accuracy of 0.97 with an AUC value of 0.97 in distinguishing these groups. Our permutation-based testing confirms that the sensor-based differences between these groups are statistically significant.
In this paper, we describe an approach to developing an ecologically valid framework for performing automated cognitive assessment. To automate assessment, we use a machine learning approach that builds a model of cognitive health based on observations of activity performance and uses lab-based assessment to provide ground truth for training and testing the learning algorithm. To evaluate our approach, we recruited older adults to perform a set of activities in our smart home test-bed. While participants perform activities, sensors placed in the smart home unobtrusively capture the progress of the activity. During analysis, we extract features that indicate how well participants perform the activities. Our machinelearning algorithm accepts these features as input and outputs the cognitive status of the participants as belonging to one of two groups: Cognitively healthy or Dementia. We conclude that machine-learning algorithms can distinguish between cognitively healthy older adults and older adults with dementia given adequate features that represent how well they have performed the activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.